TOPOLOGICAL STABILITY IN THE NICE DIMENSIONS $(n \le p)$

BY JAMES DAMON¹

Communicated November 3, 1975

0. Introduction. By [2], [3], and [5], in the nice dimensions the C^0 and C^∞ -stable mappings give two classifications for open dense subsets of the space of smooth mappings. Two natural questions about the relations between these classifications are: (1) Can distinct C^∞ -stable mappings become equivalent under the weaker notion of topological equivalence? (2) Which topologically stable mappings are C^∞ -stable? When n (= dim domain) $\leq p$ (= dim range), we can answer: (1) not only does Q(f) determine the C^∞ -type of a C^∞ -stable map germ f, but also $Q(f) \otimes_{\mathbb{R}} \mathbb{C}$ is an invariant of the topological type of f. (2) For topologically stable mappings $f: N \to P$ with N compact, f is C^∞ -stable \Leftrightarrow any suspension of f is also topologically stable.

The author wishes to thank John Mather who pointed out the possibility of using the techniqes of May [4], and made valuable suggestions.

1. Topological invariance of $Q(f) \otimes_{\mathbf{R}} \mathbf{C}$. A C^{∞} -stable map-germ $f \colon \mathbf{R}^n \to \mathbf{R}^p$ is of *simple type* if its orbit under the action of K^{p+1} has a neighborhood containing only finitely many K^{p+1} -orbits. This includes the types in the nice dimensions.

Theorem 1. For C^{∞} -stable map germs f of simple type, $Q(f) \otimes_{\mathbf{R}} \mathbf{C}$ is a topological invariant.

COROLLARY 1. For C^{∞} -stable germs $f: \mathbb{R}^n \to \mathbb{R}^p$ of simple type the following are topological invariants: $\delta(f)$, $\gamma(f)$, $\mu_{n-p}(f)$, codim $(K \cdot f)$, Thom-Boardman symbols (using the notation of [2, VI]).

Theorem 1 is probably true even for the C^{∞} -stable germs of discrete algebra type. Although the theorem does not say that Q(f) is a topological invariant in the nice dimensions this is very nearly true as in most cases there is only one real Q(f) for each $Q(f) \otimes_{\mathbf{R}} \mathbf{C}$ type.

2. S-stable maps and their properties. Next, we want to describe the topologically stable mappings in the nice dimensions that are C^{∞} -stable. We know

AMS (MOS) subject classifications (1970). Primary 57D45; Secondary 58C25, 57D35 Key words and phrases. C^{∞} -stability, topological stability, the nice dimensions, map germs of simple type.

¹Partially supported by grants from the City University of New York Faculty Research Award Program and the National Science Foundation.

that C^{∞} -stable mappings are topologically stable but they also remain so under suspension, i.e. if $f: N \to P$ is C^{∞} -stable, then so is $f \times 1_M: N \times M \to P \times M$.

DEFINITION. A C^{∞} -mapping $f: N \to P$ is S-stable if all $f \times 1^k: N \times (S^1)^k \to P \times (S^1)^k$ are topologically stable. Throughout we assume that N is compact. (This is necessary, see [4].)

PROPOSITION 2. S-stable mappings are transverse to the simple K^{∞} -orbits.

For the next proposition we have to define the immersion condition [4]. DEFINITION. Let $\Gamma \subset J^l(m, q)$, q - m = k, be a singularity submanifold invariant under K^l ; then we say Γ satisfies the immersion condition if for any C^{∞} -stable mapping $f: N \to P$ with p - n = k, $f \mid \Gamma(f) : \Gamma(f) \to P$ is a C^{∞} -immersion

PROPOSITION 3. Suppose $\Gamma \subset J^l(m,q)$ is a singularity submanifold invariant under K^l such that (1) there is an open dense $\Gamma_0 \subset \Gamma$ which satisfies the immersion condition for q-m=k. (2) Γ -type is a topological invariant for C^∞ -stable map germs, when q-m=k. Then if $f\colon N \to P$ is an S-stable mapping with p-n=k and $n<\infty$

Then, after an analysis of the sets $\Pi = \Pi(n, p)$ [2, VI], we have

PROPOSITION 4. If $f: N \to P$ is an S-stable mapping with (n, p) in the nice dimensions, then $\Pi(f) = \emptyset$, and f is multitransverse to the simple orbits.

Finally, putting these three propositions together, we can conclude

THEOREM 5. In the nice dimensions $(n \leq p)$, (N compact) S-stability is equivalent to C^{∞} -stability.

3. Outline of proof. Theorem 1 follows by the methods of [1].

For the theorems on the properties of S-stable maps we use a modification of the method used by May [4]. May perturbed a nontransverse map to make it nontransverse in a specific way. We modify this idea because our topological classification (Theorem 1 and [1]) is only valid for C^{∞} -stable map germs.

PROPOSITION. Let $f: N \to P$ be S-stable with $n = \dim N$ sufficiently big, and $\Gamma \subset J^l(N,P)$ a singularity submanifold satisfying the conditions of Propositions 2 or 3. If $j^l(f)$ is not transverse to Γ at a point $x \in N$, then there are f_1, f_2 , topologically stable and equivalent to f, and neighborhoods $U_1 \subset U_2$ of x such that: (1) $f_1 = f_2$ outside of U_1 ; (2) f_1, f_2 consist of C^{∞} -stable map germs at points $x' \in U_2$ except at one point of U_2 ; (3) $\Gamma^0(f_1) \cap U_1$ is homeomorphic to $C - \{0\}$ where C is a cone $\sum_{i=1}^r \lambda_i x_i^2 = 0$ and $\Gamma^0(f_2) \cap U_1$ is homeomorphic to the generalized hyperboloid $\sum_{i=1}^r \lambda_i x_i^2 = \epsilon$.

 $\Gamma^0(f) = \{x \in N \mid f_{(x)} \text{ is topologically equivalent to a } C^{\infty}\text{-stable map-germ of Γ-type}\}$. Then, we use a Mayer-Vietoris argument to compare $H_*(\Gamma^0(f_1))$ and $H_*(\Gamma^0(f_2))$. Then, by the proposition, we can show these are different once we know they are finitely generated groups.

For this we use the following proposition: if g is a C^{∞} -map germ, define $\Sigma_g^0(f) = \{x \in N \mid f_{(x)} \text{ is topologically equivalent to } g\}$.

PROPOSITION. If $f: N \to P$ is a topologically stable mapping (N compact), then $\Sigma_g^0(f)$ is a finite (disjoint) union of manifolds with finitely generated homology.

Then, we can use Proposition 3 to prove that if $f: N \to P$ is S-stable, then $\Pi(f) = \emptyset$. This follows because any germ in $\Pi(n, p)$ can be deformed to one of the following types: (1) Σ_i , i > 5, (2) $\Sigma_{5,(1)}$, (3) $\Sigma_{4,(2)}$, (4) $\Sigma_{3,(3)}$, (5) (x^2, y^4) in $\Sigma_{2,1}$ or (6) $\Sigma_{2,2,(1)}$.

However, these types are topological invariants and Proposition 3 implies that they do not occur in the nice dimensions. Thus, neither does any $\Pi(n, p)$ type. Finally, for multitransversality, we apply the same method but to the images of the singularity sets in P.

BIBLIOGRAPHY

- 1. J. Damon, A partial topological classification for stable map germs, Bull. Amer. Math. Soc. 82 (1976), 105-107.
- 2. J. Mather, Stability of C^{∞} -mappings. VI. The nice dimensions, Proc. Liverpool Singularities-Sympos., I (1969/70), Lecture notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971, pp. 207-253. MR 45 #2747.
- 3. ——, Stratifications and mappings, Proc. Dynamical Systems Conference, Salvadore, Brazil, 1971, Ed. M. Peixoto, Academic Press (1973), 195-232.
- 4. R. May, Transversality properties of topologically stable mappings, Thesis, Harvard University, 1973.
- 5. R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284. MR 39 #970.

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE, FLUSHING, NEW YORK 11367