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Abhyankar's treatment of differentials and hence spend no little space on 
these objects. 

(3) The key points of Abhyankar's and Murthy's proofs—the projection 
theorems and basis theorem—should be heavily emphasized via examples, 
geometric language, pictures to indicate what is going on, and some intuition 
as to where the material is headed and why. For example, it would be nice 
to have the "cone", "plane", and "quadric" lemmas in geometric language 
and to have pictures and examples for all of these results. In particular, why 
should the reader have to wait until p. 243 for the intuition behind the word 
"7r-quasihyperplane" when the concept itself is introduced on p. 151? 

It is a shame that the authors wrote the book in such an opaque and 
cumbersome style. It could have been an important contribution to the 
literature by showing how one can apply detailed concrete computations and 
ideas to algebraic geometry. 
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At first sight, the theory of the special functions of mathematical physics 
seems to be little more than a disorganised collection of formulas. There 
appear to be more than fifty special functions and there is more than one 
definition of each one of them; for each there is a bewildering variety of 
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differential equations, integral representations, recurrence formulas, series 
expansions and so on. Perhaps it is the richness of the material, or the 
challenge of establishing some kind of order in the chaos of seemingly 
unrelated results that has attracted some of the most outstanding 
mathematicians of the last two hundred years to work in the subject. Gauss, 
Euler, Fourier, Legendre, Bessel and Riemann are among the illustrious 
names which feature in the literature of the subject. As Wigner has written 
in the General Introduction to [18], "All of us have admired, at one time or 
another, the theory of the higher transcendental functions, also called 
special functions of mathematical physics. The variety of the properties of 
these functions, which can be expressed in terms of differential equations 
which they satisfy, in terms of addition theorems or definite integrals over 
the products of these functions, is truly surprising. It is surpassed only by the 
variety of the properties of the elementary transcendentals, that is the 
exponential function, and functions derived therefrom, such as the 
trigonometric functions. At the same time, special functions, as their full 
name already indicates, appear again and again as solutions of problems in 
theoretical physics". 

It is for this latter reason that many introductory textbooks such as [4], 
[6], [9], [13], [15] and [16] make use of relatively unsophisticated 
mathematical techniques. Since they are designed for the use of physicists, 
engineers and other users of mathematics, their aim is to introduce readers 
to special functions by using the methods of elementary calculus and to 
provide them with the kind of background which will permit them to use 
intelligibly numerous compilations of the properties of special functions of 
which the most distinguished is [2]. 

Because the special functions of mathematical physics are analytic func­
tions of their arguments, their properties are conventionally derived by 
means of the methods of the theory of analytic functions. The truth of this 
assertion is evidenced by the fact that the second half of the classic treatise 
on "modern" analysis [23] is devoted to the derivation of detailed properties 
of special functions by the use of function-theoretic techniques developed in 
the first half. It will be recalled, too, that, in addition to providing a 
compilation of a collection of results which would be of value to physicists 
who encountered Bessel functions in the course of their researches, Wat­
son's aim in writing his monumental treatise on Bessel functions [22] was to 
develop "applications of the fundamental processes of the theory of func­
tions of complex variables. For this purpose Bessel functions are admirably 
adapted; while they offer at the same time a rather wider scope for the 
application of the parts of the theory of functions of a real variable than is 
provided by trigonometrical functions in the theory of Fourier series". 

In a similar way, still the best account of Legendre functions of the second 
kind is given in MacRobert's textbook on functions of a complex variable 
[8], and Hobson, in his treatise [5] on spherical and ellipsoidal harmonics, 
adopts Watson's philosophy. 

The unifying principle came, in the end, not from analysis but from 
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algebra—through the theory of group representations. The connexion be­
tween special functions and group representations was first pointed out by 
Eli Cartan [1], and the application of the theory of group representations to 
quantum mechanics in the years immediately succeeding the publication of 
Cartan's paper played an important role in the investigation of this connex­
ion. For simple Lie groups (for instance SO(3), the group of rotations in R3, 
and M(2), the Euclidean group of the plane) we can choose a basis in the 
representation space in such a way that the elements of some subgroup H 
are given by diagonal matrices with exponential functions in the principal 
diagonal. The remaining elements of the group can be represented in the 
form high2 where hi, h2eH and g(t) runs through a certain one-parameter 
manifold. It is found that the functions g coincide with the special functions 
of mathematical physics. For example, repesentations of M(2) are connected 
with the Bessel functions of the first kind, and, for a suitable choice of basis 
in the representation space, the matrix elements of representations of SU(2), 
the group of unitary unimodular matrices of the second order—closely 
related to SO(3)—are expressed in terms of Jacobi polynomials. The argu­
ments of the special functions correspond to suitably chosen parameters of 
the relevant group, so that the addition theorems for the special functions 
merely express the multiplication laws of the group elements. Limiting cases 
of the addition theorems yield the differential equations which the special 
functions obey. The integral properties are a consequence of Frobenius' 
orthogonality relations for the matrix elements of irreducible representa­
tions as generalized for Lie groups by means of Hurwitz's invariant integral, 
as are the completeness relations. Since some of the Lie groups can be 
thought of as limiting cases of others, this gives rise to relations connecting 
the special functions representing them. For instance, the fact that M(2) can 
be considered as a limit of S O (3) means that there is a relationship between 
Bessel functions and Jacobi functions. 

In studying more complicated groups, such as the Lorentz group and 
SO(n), we find that not all matrix elements of representations of these 
groups can be expressed in terms of "classical" special functions. It is 
possible to obtain such expressions only for some of the matrix elements; for 
the rest it is necessary to introduce functions not already met with in 
mathematical analysis. That these new functions possess properties as varied 
and as rich as those of the classical special functions has been amply 
demonstrated by Vilenkin [20]. 

This method of developing the theory of special functions is undoubtedly 
the one which should be followed by serious students of mathematics for it 
gives meaning to what otherwise seems chaotic. Since representations of 
simple groups play such a vital part in modern physics, a student of physics 
might well profit also from looking at special functions in this way. Fortu­
nately there are now three good textbooks for the reader to choose from for 
this is the path of development chosen by Vilenkin in his encyclopaedic 
work [21] and by Willard Miller, Jr. in his more modest treatise [11]; but a 
more attractive entry to this complex of ideas—especially for the theoretical 
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physicist—is provided by Talman in his book [18] based on lectures by 
Wigner. We should give Wigner the last word: "Naturally, the common 
point of view from which the special functions are here considered, and also 
the natural classification of their properties, destroys some of the mystique 
which has surrounded and still surrounds, these functions. Whether this is a 
loss or a gain remains for the reader to decide". 

The development of the theory of Fourier series and more recently of 
functional analysis led to sequences of special functions being studied from 
the viewpoint of orthonormal bases in certain Hubert spaces. This is the 
starting point of Szegö's classic work on orthogonal polynomials [17] and of 
several more recent monographs of which mention might be made of [3] and 
[14]. 

An interesting attempt to establish a different form of unified theory of 
special functions due to Truesdell [19] has been unfairly neglected, though 
there has been an indication recently [10] that it has not been forgotten 
entirely. Truesdell's aim is "to provide a general theory which motivates, 
discovers and coordinates such seemingly unconnected relations among 
familiar special functions" as are known to exist. Truesdell's method centers 
around the functional equation 

^ F ( z , a ) = F (z , a + l) 

to each of whose analytic solutions there corresponds the generating func­
tion of a set of special functions. He has shown how the commonly used 
formulas of the theory of special functions can be derived as special cases of 
a handful of results derived from the study of this generating function. 

Yet another approach is to regard Gauss' hypergeometric function 2Fi and 
Kummer's confluent hypergeometric function iFi as forming the core of the 
theory of special functions, since the Legendre functions and most of the 
classical orthogonal polynomials can be considered as 2Fi functions, while 
the Bessel functions, the parabolic cylinder functions and the Coulomb 
wave-functions are special cases of the iFi function. Natural generalizations 
of these functions are the generalized hypergeometric function pFq, Mac-
Robert's E-function and Meijer's G-function and it is possible to set up a 
general theory of such functions and then to deduce the properties of the 
classical special functions from it. This approach, which seems singularly 
lacking in interest, is the one favoured by Luke [7]; it is not one which can 
be recommended to students, but then it was Luke's intention to provide a 
work of reference, not a textbook. 

In the Preface of the book under review the author states: "While little 
claim can be made to originality, it is hoped that there is enough distinction 
in the selection of material and type of proof to throw new light on this 
classical subject. The aim was to present a range of topics such that both 
mathematicians and applied scientists with a variety of interests will find 
material that is useful, and mathematically and aesthetically pleasing". 
Whether a pure mathematician—even a classical analyst—would find the 
book aesthetically pleasing is a matter of doubt but there can be no doubt 
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that an applied mathematician will find much material that is useful, not in 
the form of an extensive catalogue of useful results, but in the form of a 
careful discussion of some of the basic techniques of the subject. It does, of 
course, contain the main formulas likely to be used by the nonspecialist but 
it is concerned with techniques rather than formulas. It is well written in the 
sense that the author is more concerned with conveying the essential ideas 
of a proof than with supplying the full rigour. This is most obvious, and 
arguably most desirable, in his discussion of the asymptotic behaviour of the 
gamma function and of the Legendre functions,1 and when he derives results 
for the confluent hypergeometric function by considering limiting cases of 
results previously established for Gauss' hypergeometric function. 

The book begins with two chapters on orthogonal polynomials. The first 
considers general orthogonal polynomials and their role in approximation 
theory, ending with an account of the use of orthogonal polynomials over a 
curve enclosing a finite region in the complex plane to the problem of 
finding a holomorphic function which maps the region bijectively onto the 
unit disk. The classical orthogonal polynomials are introduced in the second 
chapter by means of the generalized Rodrigues formula and the usual 
material on differential equations, generating functions, etc. is presented; 
there are some applications too, as well as the traditional account of how 
Hermite polynomials are involved in the solution of Schrodinger's equation 
for the linear harmonic oscillator; there is an interesting and unusual 
discussion of the connexion between the equilibrium of a certain set of 
point charges and the zeros of Jacobi polynomials. 

Chapter 3 is devoted to the gamma function. The three definitions—as an 
integral (Euler), a limit (Gauss) and an infinite product (Weierstrass) are 
given and shown to be equivalent. The main properties of the gamma 
function are then derived by means of whichever definition gives any 
particular result most elegantly. The chapter ends with an account of some 
of the more elementary properties of Mellin transforms and their applica­
tions. 

In Chapter 4 there is a detailed description of the technique of determin­
ing integral expressions for the solutions of linear differential equations of 
the second order. The method is then illustrated with reference to the 
hypergeometric equation, and the principal properties of hypergeometric 
functions derived. Unusual in a book at this level there is a detailed account 
of the connexion between hypergeometric functions and the conformai 
mapping of curvilinear triangles, including a group theoretic discussion of 
the case where the sum of the angles of the triangle exceeds ir. 

The next two chapters deal, respectively, with Legendre functions and 
with spherical harmonics in higher dimensions, introduced by way of La­
place's equation. The idea of a Green's function is also developed in these 
chapters. 

Chapter 7 is concerned with confluent hypergeometric functions and 

1 It should be noted that an excellent treatment of asymptotic expansions of special functions 
is given in Olver's book [12] which appeared after the book under review. 
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Chapter 8, the longest in the book, with Bessel functions. It has in it all that 
could reasonably be expected in 80 pp. and certainly is an adequate prepara­
tion for the reading of Watson's treatise [22]. In addition to presenting 
standard results it has some interesting applications including one to physical 
optics—a subject long neglected by teachers of mathematical physics. 

The final chapter deals with Hill's equation. 
Each chapter has its own set of exercises and there is a bibliography of 

books on special functions and related topics. 
In some ways the present book can be regarded as a considerably extended 

version of the author's earlier book [4] but it is difficult to avoid the 
impression that in this latest work he has a less clear view of the audience to 
which his material is directed. At one point he seems to be addressing the 
"applied scientists" while at other points he makes reference to concepts 
such as "Riemann surface" and the "Schwarz reflection principle" which 
demand of the reader a much higher degree of mathematical maturity than 
is traditionally associated with an "applied scientist"—at least one at the 
beginning of his career. Graduate courses in special functions are out of 
fashion nowadays but many practising mathematicians need to have a 
working knowledge of at least the elements of the subject. There is much in 
this book that would provide useful material for a reading course in special 
functions or as supplements to courses in function theory and in differential 
equations. It should certainly occupy a place on the shelves of applied 
mathematicians as a useful and succinct reference book. 
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Essentials of Padé approximants, by George A. Baker, Jr., Academic Press, 
New York, 1975, xi+306 pp., $26.00. 

The area of rational approximation and interpolation of functions has 
been studied intensively since the advent of electronic computers. This has 
brought the Padé table to the foreground and the text under review is the 
first pulling together of a lot of information about these tables that has 
appeared in the last 20 years. The texts by Perron and Wall on continued 
fractions, each of which devotes a chapter to the Padé table, have been 
among the chief references so far. A rational function rm,n(z) = pm,n(z)/qm,n(z) 
is of type (m, n) if pm,n(z) is a polynomial of degree ^ m and qm,n{z) a 
polynomial of degree ^ n . rm,n(z) interpolates a given function f(z) at the 
distinct points Zi, • • • , Zk if rm,n(zi)=f(Zi), i = l, • • • , k. If some of the points 
Zi coincide, say zi = Z2=z3, then it is natural to require rm,n(zi)=/(zi), 
rm,n(zi) =/ ' (z i ) , and C,n(zi) = f"{zi) instead of rm,n(zi) = f(zi) for i = 1, 2, 3. 
The case zx = z2 = • • • = zk, i.e. r%n(zi) = /( l )(zi), for i = 0, 1, . . . , k -1 requires 
that rm,n(z) has a high order of contact with f(z) at Zi. There are two 
classical and equivalent definitions of the (m, n) Padé approximant Rm,n to 
f(z) at z = 0: 

1. find the unique rational function Rm,„ in lowest terms such that 
f(z)-Rm,n(z) = 0(zk), k=maximum, and 

2. find polynomials Pm,n and Qm,n such that Qm,n(z)f(z)-Pm,n(z)= 
0(zm + n + 1) , and let Rm,n be Pm,n/Qm,n in lowest terms. 

In definition 1, Rm,n depends on m + n + 1 parameters and one would 


