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In one variable there are a number of excellent textbooks on the theory of 
entire functions. In several variables, the theory has grown steadily through­
out the last 25 years and has gained a respectable size. Therefore the 
appearance of the English translation of Ronkin's book is highly welcome. 
The major emphasis is upon the growth behavior of entire functions and 
upon the construction of these functions with a given growth behavior. The 
distribution of zeros of entire functions and the construction of these 
functions with given zeros receive only limited attention. In the selection of 
the material there is some similarity with Lelong's Montreal Lecture Notes 
[2], but Ronkin's book also brings to us the results of the Russian School. 
The reviewer's Whitewater Notes [5] are a survey of results on the construc­
tion of entire functions with given zeros with growth conditions, thus the 
overlap is minimal. These three books are still the only ones available but in 
combination they cover most of the essential topics in the theory of entire 
functions of several variables. 

The introduction does not introduce the highlights of the book, which 
would have been helpful, but assembles a variety of topics and facts useful in 
the later part of the book. Proofs should have been omitted; this is not the 
place for them. Chapter I provides an excellent introduction to the theory of 
subharmonic functions and so does Chapter II on pluri-subharmonic func­
tions. The concept of T-capacity is introduced, and certain sets associated to 
families of pluri-subharmonic functions are shown to be of zero T-capacity. 
Here Lelong uses the concepts of polar and negligible sets instead. Some 
remarks about the connection between these concepts would have been 
helpful. The growth behavior of functions of class 31 and 83 are studied. 
Hopefully someone will invent better names. Denote JR+={x e R | x^O}. 
Define pn:C

n^Rl by 0„(zi, • • -, z„) = (|zi|, • • -, |zn|). Then*:KÎ->JRU{-oo} 
belongs to 31 if and only if <I> ° 0n is pluri-subharmonic on Cn. A function 
* :C n xU + -*J*U{-oo} belongs to S3 if and only if <&<>(ldxj8i) i s P l u r i ' 
subharmonic and e4* is continuous. These classes have fine growth properties 
and practically all growth measures of entire functions belong to them. 

After these two chapters, the quality of the presentation begins to 
deteriorate. Chapter III deals with the main purpose of the book. The 
growth behavior of an entire function is described by geometric means. 
These descriptions are shown to be characteristic. Consider just one of the 
problems, to get the flavor. Let f:Cn-*C be an entire function. For each 
r = (ri, • • •, rn)eR+ define 

Mf(r) = max {|f(zi, • • •, zn)\ | |z,| = rh Vj = 1, • • •, n}. 

Then \og+Mf belongs to class 3Ï. Let B(f) be the interior of the set of all 
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a = (ai, • • -, an)eRl such that a constant ra exists such that 

log+Mf(r)^ras+-..+r> 

for all r = (ri, • • • , r„) with |r |>r0 . If £(ƒ) ^ 0 , then ƒ is said to have finite 
order. Let S(f)=dB(f) be the boundary of ƒ. Then each reS(f) is called a 
system of associated orders. If x is a vector with positive coordinates in Rn, 
one and only one A^O exists such that AxeS(f). The order of ƒ and the/th 
order of ƒ are defined analytically and denoted by O r d / and Ord,ƒ 
respectively. Geometrically they are obtained by (Ord ƒ ,••• , Ord f)eS(f) 

a n d b y Ord, ƒ = inf {r, | (n, • • •, r„) e B(f)}. 
T h e n Ord, ƒ ^ Ord ƒ ̂  Ordi ƒ + • • • + Ordn f. 

A subset B of Rn is called octant-like (the concept cries for a better name) if 
x = (xi, - " ,xn)eB and y = (yi,• • *, yn) with y,-^x,- for all j = l , • • •, n imply 
y G B . Define j(xi, • • •, xn) = (l/xi, • • -, l/xn). Let B ^ 0 be open in Kn and 
contained in JR+. Then B=B(f) for some entire function ƒ if and only if B is 
octant-like and j°B is convex (Theorem 3.1.3). This solves the characteriza­
tion problem of the possible order behavior of a function of finite order. 
Similarly, if an associated order r is given, the possible behavior of the 
associated types of a function of this order r can be characterized. A 
holomorphic function ƒ : Cn+1—» C can be considered as an entire function of 
its last variable alone depending on n complex parameters. The growth 
measures are functions of class 33. The generic growth is identified and the 
deviation from the generic growth is studied. 

Subsequently, functions of order 1 and functions of exponential type are 
investigated. Fourier transforms are considered and the Plancherel-Pólya 
theorem is proved extending the Paley-Wiener theorem to several variables. 

According to Lelong, the radial indicator of an entire function ƒ of 
positive, finite order p on Cn is defined by 

LKz) = l i m s u p ^ Ç ^ < + = c 
t—>oo t 

for each z € Cn. The regularization L* of Lf is pluri-subharmonic with 
L*(tz) = tpL*(z) for all zeCn and t>0 . Also Lf is independent of the choice 
of origin and {z e Cn \ Lf(z)<L*(z)} is an Fa-set of T-capacity zero. In­
versely, if 0<p eR, if u is pluri-subharmonic on Cn with u(tz) = tpu(z) for all 
z eCn and t>0 , then an entire function ƒ of order p exists such that L*=u. 
This difficult theorem was proved by Kiselman for p = 1 and independently 
by Martineau in general. Martineau's proof is given and requires the 
introduction of L2-estimates on the S-operator. In §6 of Chapter III, this 
theory is sketched for Cn closely following the textbook of Hörmander [1]. 

Chapter IV is devoted to the distribution of zeros of entire functions of 
several variables. After an unsatisfactory auxiliary section on integration 
over an analytic set, the growth of the zero divisor of an entire function is 
studied. The canonical function of a divisor of finite order is constructed by 
Lelong's method and Ronkin's integral representation is given. These parts 
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of Chapter IV have been totally remodeled in [5]. At the end an integral 
representation of an entire function of minimal growth with respect to the 
last variable is given; the other variables being parameters. 

The book covers a wide area, but important parts are missing. Absent are 
meromorphic functions, the Poisson-Jensen formula, the First and Second 
Main Theorems of value distribution, and the theory of functions of finite 
À-order. After the Russian edition appeared, essential new questions were 
asked and important new results were obtained. Let f:Cn->Cp be a 
holomorphic map such that A=/ _ 1 (0) has pure dimension n - p ^ O . Can the 
growth of A be estimated by the growth of the coordinate functions of ƒ? 
This is the Bézout Problem of Griffiths. The answer is negative in general as 
Cornalba and Shiftman have shown. In some cases, partial answers were 
given, but the problem is still poorly understood. Skoda [4] solved a deep, 
long-outstanding problem. Let A be an analytic set of pure dimension p in 
C n ; then there exist n+1 holomorphic functions / i , • • •, fn+i whose growth 
can be canonically estimated by the growth of A and such that A is the 
common zero set of fi, • • •, f„+i. In the unit disc, the Blaschke product is the 
canonical function of a divisor satisfying a Blaschke condition. It is the 
analogue of the Weierstrass product without weights. Recently, Skoda and 
Henkin showed independently, that a divisor satisfying a Blaschke condition 
in a strictly pseudoconvex domain in Cn is the zero divisor of a holomorphic 
function in the Nevanlinna class. Of course, these new results could not have 
been included in the book, but one could have hoped for a question here 
and there pointing the way to the near future. 

The book brings not much new. Little attention has been given to cast it 
into one mold. Some of the material is taken practically unaltered from the 
original source, Chapter III, §6 from Hörmander's book (with some altera­
tions and improvements) and almost all of Chapter IV, §§2, 3 from Ronkin 
[3]. The material should have been reorganized around a common theme, 
the highlights should have been brought out better and their importance 
should have been expounded. Such a reorganization would have helped the 
reader to gain a better understanding of the theory and to inspire him to 
penetrate to new frontiers. For instance, Theorem 4.3.6 on p. 358 is one 
page long and couched in complicated language. The reader's reaction may 
well be a feeling of relief that the book will end within five pages. 

Occasionally the author is vague, misleading or even wrong. For instance 
on p. 107 the following is stated "Let <ï>(r)e2ï be a function of finite order 
p(<ï>). Let BP = fîp(<ï>) denote the set of all points a e Rl such that for |r|-»oo3 

<£>(r)<rl1+ • • • + r"n. It is obvious that for a'eBp the set Bp contains the 
entire hyperoctant {a:ai> a', i = l, • - - ,n}. On the other hand, if a'éBp, 
then any point aeRl with ai^a\ is not in Bp ." Since for any given j there 
exist vectors r with arbitrary large length \r\ such that 0 < r , < l the "obvious" 
part of this statement is not too obvious (but true) and the "On the other 
hand" part is wrong as the example 4>(r) = ri+ • • • +rn shows. For the same 
reason the other limits of the same type should be explained more explicitly. 
Also the indeterminate factor 0° may occur in the formulas of Theorem 
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3.1.4 for arbitrarily large |k|. The same holds for similar formulas in the 
neighborhood of this theorem. On p. 197, formula (3.6.52) supposedly 
implies (3.6.53) "Since the function |U(A)| is subharmonic ". This is about as 
helpful as the advice "If in Chicago, turn left to find the loop". Hörmander's 
advice (p. 104) for the same conclusion is in no way better. In fact, the 
reader has to do a good deal of work to get from (3.6.52) to (3.6.53). On 
p. 213, the following statement is made: "the area of an analytic complex 
one-dimensional surface M is equal to the sum of the areas of its projections 
onto the coordinate planes". This is true for the area elements, but not for 
the areas themselves, and it does not become true because a good number of 
mathematicians have made this erroneous statement. A naive beginner 
would conclude that the area of any complex curve in the unit polydisc is 
bounded by 7m. 

Integration over analytic sets is badly handled. At first the integral is only 
defined for intersections of the analytic set with polydiscs and three pages 
later it is used for intersections with balls. The author may believe that his 
Lemma 4.1.1 proves that a continuous form co of bidegree ( n - 1 , n - 1 ) is 
locally integrable over an analytic set of dimension n - 1 . 

Surely, the sheet number N on p. 221 is finite over each component of 
<£'-x",'n; but there may be infinitely many components. Hence N may not be 
bounded. Therefore the sum in (4.1.22) may be pointwise finite, but may not 
have a bounded length. So the existence of the integral (4.1.22) is not 
established. More and different work is required to prove the integrability 
theorem for continuous forms on analytic sets. Integration over certain real 
analytic sets of dimension n - 1 occurs in (4.3.23) and in Theorem 4.3.6. 
Integration over real analytic sets is complicated by the fact that the singular 
set may have codimension one, and that the regular set does not carry a 
natural orientation or may not even be orientable. Nothing at all is said 
about the integration occurring in (4.3.23). In [5, Lemma 10.4] an attempt 
was made to explain this integration. For the integration in Theorem 4.3.6 
only Lemma 4.1.2 is given without proof. Here the author should have done 
better. 

The translators did a fine job. The printing is narrow. Some subscripts of 
less than half a millimeter are used! The buyer is advised to acquire a 
magnifying glass as well. There are quite a number of misprints. The worst 
of these is the conversion of complicated exponents into factors on pp. 107, 
108 in the English edition. For instance, the last formula on p. 107 reads: 
"Since, for any non-negative ai, • • • , an, 

i = l 1 

Obviously the formula is wrong, since n = • • • = rn = 1 < n and cii = n* for all 
i = l, • • -, n imply 1^1/n. At first all a, have to be positive. Then C=YA=I l/ai 
is defined and belongs in the exponent (as is also true of the first formula on 
the next page). A correct formula is 

rir2... r„ ^ ( rWaig + • • • + ra
n»/anè)è. 
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Despite these shortcomings, this book provides a good introduction to the 
subject matter. The beginner can learn much from it and the expert can use 
it as a reference book. It will have its impact on the future of the field. 
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Elliptic modular functions, by B. Schoeneberg, Springer-Verlag, New York, 
Heidelberg and Berlin, 1974, 229+viii pp. 

Before the appearance of Gunning's Lectures on modular forms in 1962— 
if one leaves aside Hardy's 1940 book, Ramanujan, which does not attempt 
to deal with the theory of modular functions systematically, but instead 
treats the subject with the characteristically unusual (though always interest­
ing) perspective of the great Indian mathematician in mind—the only book 
available in the English language in this important area of mathematics was 
Lester Ford's classic, Automorphic functions. First published in 1929 as an 
elaboration of a 1915 Edinburgh Mathematical Tract, Ford's book served the 
mathematical public well for many years. It is hardly a criticism to point out 
the obvious—that by the early 1960's it was long out of date. While Ford 
deals quite effectively with uniformization theory and with the geometry of 
discontinuous groups—in particular he gives a lucid account of the construc­
tion of fundamental regions for discontinuous groups by what has come to 
be known as "Ford's method" of isometric circles—a number of fundamen­
tal developments in the decades following the publication of Ford's book 
created the need for a new exposition of the theory of modular and 
automorphic functions in one complex variable. 

Though small in size and limited in intention, Gunning's book went far 
toward beginning to fill this need. Treating the modular group and certain 
congruence subgroups from the viewpoint of the theory of compact 
Riemann surfaces, Gunning made available to his readers an entire complex 
of ideas too "modern" to appear in Ford's work. Notable examples are the 
application of the Riemann-Roch theorem to calculate the dimension of the 
space of cusp forms, the introduction of the Petersson inner product and 


