THE FAILURE OF SPECTRAL ANALYSIS IN L^p FOR 0

BY KAREL de LEEUW¹

Communicated October 13, 1975

1. Introduction. For $0 , <math>L^p$ is the space of measurable f on the circle group **T** with

$$||f||_p = \left[(2\pi)^{-1} \int_{-\pi}^{+\pi} |f(x)|^p dx \right]^{1/p} < \infty$$

If $0 , <math>L^p$ is not a Banach space, but is a metric space with distance defined by $d(f, g) = ||f - g||_p^p$.

A linear subspace of L^p will be called a T-subspace if and only if it is closed and translation invariant. If F is a function or a collection of functions in L^p , then $L^p(F)$ will denote the smallest T-subspace of L^p containing F, the T-subspace of L^p generated by F. If $F = \{e^{in} : n \in \Delta\}$, is a collection of exponential functions, $L^p(F)$ will also be denoted by $L^p(\Delta)$.

For $p \ge 1$, the classification of the T-subspaces of L^p is straightforward (see [3, Chapter 11]). The map

$$(1.1) \qquad \qquad \Delta \xrightarrow{} L^p(\Delta)$$

gives a 1-1 correspondence between the collection of all subsets of integers and all T-subspaces of L^p .

The purpose of this note is to point out that the case 0 is much more intricate, to be specific, the map (1.1) is neither 1-1 nor onto. We shall outline proofs of results which imply the following.

THEOREM 1. Let 0 . Then

- (i) L^p has nontrivial T-subspaces containing no exponentials;
- (ii) There are distinct sets Δ and Γ of integers with $L^p(\Delta) = L^p(\Gamma)$.

Details will be published elsewhere. In what follows, "Proof" should of course be interpreted to mean "Outline of Proof".

2. Spectral analysis in H^p for $0 ; Cauchy integrals. Here we restrict to the T-subspace <math>L^p(\{e^{in}: n \ge 0\})$, which is denoted by H^p . (For the basic properties of H^p which we use in what follows, see [2, Chapter 7], [4, Chapter 3] or [1].) H^p can also be characterized as follows: Let D be the unit disk $\{z: |z| < 1\}$. We define $H^p(D)$ to consist of all functions F which are analytic in D with $|||F|||_p = \sup\{||F_r||_p: 0 < r < 1\} < \infty$, where each F_r is de-

AMS (MOS) subject classifications (1970). Primary 30A78; Secondary 43A15.

¹This research was supported by the National Science Foundation Grant MPS71-02841A04.

fined on **T** by $F_r(e^{i\theta}) = F(re^{i\theta})$. The functions in $H^p(\mathbf{D})$ have boundary values a.e. on **T** and the mapping $F \xrightarrow{} \widetilde{F}$ defined by $\widetilde{F}(e^{i\theta}) = \lim_{r \to 1} F(re^{i\theta})$, a.e. $e^{i\theta} \in \mathbf{T}$, is an isometry of $H^p(\mathbf{D})$ onto H^p .

We shall denote by L_0^p the T-subspace $H^p \cap H^p = \{ f : f \text{ and } \overline{f} \text{ are in } H^p \}$. Propositions 2.2 and 2.3 below show that L_0^p is quite large if p < 1 even though it consists only of constant functions if $p \ge 1$. We first indicate how L_0^p is our "universal counterexample" to spectral analysis.

PROPOSITION 2.1. L_0^p contains no nonconstant exponential functions.

PROOF. We may assume p < 1. If $H^p \cap \overline{H^p}$ contained a nonconstant exponential function, it would contain some e^{in} for n < 0. By Theorem 7.35 of [5], $H^p \cap L^1 = H^1$. But $e^{in} \notin H^1$.

The above proof of course yields a great ideal more than asserted by Proposition 2.1, namely, that $L_0^p \cap L^1$ consists only of constant functions.

If μ is a finite Borel measure on T, we define F_{μ} by

(2.1)
$$F_{\mu}(z) = \int \frac{w}{w-z} d\mu(w), \quad |z| \neq 1.$$

The restriction of F_{μ} to the unit disk **D** will be denoted by C_{μ} . By Theorem 3.5 of [1], C_{μ} is in each $H^{p}(\mathbf{D})$ for p < 1 and thus its boundary function \widetilde{C}_{μ} is in each H^{p} for p < 1. We will call \widetilde{C}_{μ} the *Cauchy transform* of μ .

PROPOSITION 2.2. Let $0 . Then <math>L_0^p$ contains the Cauchy transforms of all singular measures on T.

PROOF. Let μ be a singular measure on T. Define F_{μ} by (2.1) so $C_{\mu} = F_{\mu}$ on D. Then, for $z = re^{i\theta}$, |z| < 1, $F(z) - F(1/\overline{z}) = \sum_{-\infty}^{+\infty} \hat{\mu}(n)r^{|n|}e^{in\theta}$, which is the *r*th Abel mean of the Fourier series of μ . Since μ is singular, Theorem 1.2 of [1] shows that the series converges a.e. in T to 0. Thus, the function G defined in D by $G(z) = \overline{F(1/\overline{z})}$ has boundary values conjugate to \widetilde{C}_{μ} a.e. on T. It remains to show that $G \in H^p(D)$ for each p < 1. Since $G(z) = -\sum_{n=1}^{\infty} \hat{\mu}(-n)z^n$ in D, if the measure η is defined on T by $\eta(E) = -\int_E w d\mu(-w)$, $G = C_{\eta}$ and thus $G \in H^p(D)$ for each p < 1 by Theorem 3.5 of [1].

We can assert a converse to Proposition 2.2. It is an easy consequence of (i) of Theorem 2.4 below that if p < 1, and μ is a measure on T, $\widetilde{C}_{\mu} \in L_0^p$ if and only if μ is a singular measure plus a constant multiple of Lebesgue measure.

A bounded analytic function ϕ defined in D is called *inner* if $|\phi(z)| < 1$, $z \in D$, and $|\phi(e^{i\theta})| = 1$, a.e. $e^{i\theta} \in T$.

PROPOSITION 2.3. Let $f \in L_0^p$. If ϕ is inner with $\phi(0) = 0$, then $f \circ \widetilde{\phi} \in L_0^p$.

PROOF. Let $f \in L_0^p$. Then there are G and K in $H^p(\mathbf{D})$ with $\widetilde{G} = f$ and $\widetilde{H} = \overline{f}$ in L^p . That $G \circ \phi$ and $K \circ \phi$ are in $H^p(\mathbf{D})$ follows from Theorem 1.7 of [1]. Let X be the set of $e^{i\theta} \in \mathbf{T}$ where $\lim_{r \to 1} H(re^{i\theta}) = \lim_{r \to 1} G(re^{i\theta})$. Since

X has measure 2π , $\phi(e^{i\theta})$ must be in X for a.e. $e^{i\theta} \in \mathbf{T}$. Thus $(G \circ \phi)^{\sim} = f \circ \phi$ and $(H \circ \phi)^{\sim} = \overline{f} \circ \widetilde{\phi} = (f \circ \widetilde{\phi})^{-}$, which shows that $f \circ \widetilde{\phi} \in L_0^p$.

One more definition before we state the main result of this section. If $F(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in **D**, we define spec F to be $\{n: a_n \neq 0\}$.

THEOREM 2.4. Let $0 . Suppose that <math>\mu$ is a finite Borel measure on T.

(i) If μ is absolutely continuous, then $L^p(\widetilde{C}_{\mu}) = L^p(\operatorname{spec} C_{\mu})$. (ii) If μ is singular, then $L^p(\widetilde{C}_{\mu})$ contains no nonconstant exponential functions.

PROOF. (The equality is clear if $\widetilde{C} \in L^1$. But we only have that $\widetilde{C}_{\mu} \in L^r$ for each r < 1.) $\widetilde{C}_{\mu} \in L^{p}(\operatorname{spec} C_{\mu})$ since the Fourier series of \widetilde{C}_{μ} is Abel summable to \widetilde{C}_{μ} in $\|\cdot\|_{p}$ (see p. 284 of [5]). Thus, $L^{p}(\widetilde{C}_{\mu}) \subseteq L^{p}(\operatorname{spec} C_{\mu})$. That $L^p(\text{spec } C_{\mu}) \subseteq L^p(\widetilde{C}_{\mu})$ follows by an appropriate adaptation of the discussion on p. 263 of [5]. (ii) follows from Proposition 2.1 and 2.2.

To see that (i) of Theorem 1 is a consequence of Theorem 2.4, take $L^p(\widetilde{C}_u)$, where μ is any singular measure on **T** with $\int d\mu = 0$.

Theorem 2.4 lends weight to the following conjecture: If λ is a measure on T with absolutely continuous part μ , then $L^p(\widetilde{C}_{\lambda})$ and $L^p(\widetilde{C}_{\mu})$ contain the same exponentials if p < 1.

There are other natural topologies besides the norm topology for H^p in the case 0 , in particular, the weak topology and the topology induced by thecontaining space in the sense of [2]. Routine arguments show that in these topologies the T-invariant subspaces of H^p are in 1-1 correspondence with the subsets of the nonnegative integers, as is the case when $1 \le p < \infty$ and H^p has the norm topology.

3. Distinct sets of exponentials spanning the same subspace of L^p . If μ is a finite Borel measure on T, its spectrum is $\{n: \hat{\mu}(n) \neq 0\}$. The following implies (ii) of Theorem 1.

THEOREM 3.1. Let $0 . Suppose that <math>\Gamma$ is the spectrum of a singular measure on **T** and that Δ is obtained from Γ by deleting a finite number of elements. Then $L^p(\Gamma) = L^p(\Delta)$.

PROOF. For 0 < r < 1, define F_r on T by $F_r(e^{i\theta}) = \sum_{-\infty}^{+\infty} \hat{\mu}(n) r^{|n|} e^{in\theta}$. Since F_r is the rth Abel mean of the Fourier series of μ and μ is singular, Theorem 1.2 of [1] shows that $\lim_{r \to 1} F_r(e^{i\theta}) = 0$, a.e. $e^{i\theta} \in T$. $\{F_r : 0 < r < 1\}$ is bounded in L^1 and thus $\lim_{r\to 1} ||F_r||_p = 0$. Let $\Lambda = \{n: n \in \Gamma, n \notin \Delta\}$ and define the trigonometric polynomial P on **T** by

$$P(e^{i\theta}) = -\sum_{n\in\Lambda} \hat{\mu}(n) e^{in\theta},$$

so

$$\lim_{r\to 1} \left\| \sum_{n\in\Delta} \hat{\mu}(n) r^{|n|} e^{in \cdot} - P \right\|_p = 0.$$

Thus $P \in L^p(\Delta)$, and as a consequence each e^{im} with $m \in \Lambda$ is in $L^p(\Delta)$, so $L^p(\Gamma) = L^p(\Delta)$.

BIBLIOGRAPHY

1. P. Duren, Theory of H^p spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.

2. P. Duren, B. Romberg and A. Shields, Linear functionals on H^p spaces with 0 , J. Reine Angew. Math. 238 (1969), 32-60. MR 41 #4217.

3. R. E. Edwards, Fourier series: A modern introduction. Vols. 1, 2, Holt, Rinehart and Winston, New York, 1967. MR 33 #4659; 35 #7062.

4. Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 40 #1734.

5. A. Zygmund, Trigonometric series, Vols. 1, 2, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305