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This note announces a new construction in the theory of 4-manifolds.

Let p: T3 — T3, T3 = 8! x S! x S1, the torus of dimension three, be a
diffeomorphism, with ¢(x) = x, some x € T3. Let A be a matrix for the map ¢
induces on 7, 7> =Z @ Z ® Z. Assume that det 4 = —1 and det(l - 4%) = #I,
I = identity matrix. It is easy to see that such a map ¢ exists.

Let the manifold M be obtained from T3 x [0, 1] by identifying (y, 0)
with (¢(¥), 1). Let M,, be the complement of the interior of a tubular neighbor-
hood of the image of {x} x [0, 1] in the quotient M. Clearly dM, can be iden-
tified with the boundary S(p) of the nontrivial disk bundle D(p) over S ! with
group O(4). There is a (canonical) map k: M, — D(p) restricting to the identity
on S(p).

Let N be any connected nonorientable 4-manifold, and let N, be the com-
plement of the interior of a tubular neighborhood of a circle in N representing an
element o € m N that reverses orientation. Then aN, = S(p). Let

On = 0,4 =No Ys(o) My

and let ky = idy U hy; ie., Qy is obtained from the disjoint union of Ny and
M, by identifying their boundaries.

THEOREM. Suppose a has order two. Then

@) hy is a simple homotopy equivalence,

(i) hy is not homotopic to a diffeomorphism (or even to a PL homeo-
morphism).

For example, let V be real projective 4-space. Then Q,; is not diffeomor-
phic or even PL homeomorphic or PL s-cobordant to N. In fact, there are exact-
ly two s-cobordism classes of homotopy 4-dimensional real projective spaces. In
particular one has

THEOREM. There is a smooth free action of the group of order two, on a
homotopy 4-sphere, that is not equivariantly diffeomorphic (or even PL homeo-
morphic) to a linear action on the standard 4-sphere.
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