A SUFFICIENT CONDITION FOR k-PATH HAMILTONIAN DIGRAPHS

BY JOHN ROBERTS

Communicated by Walter Gautschi, September 7, 1975

A directed graph (or digraph) D is: (1) traceable if D has a hamiltonian path; (2) hamiltonian if D has a hamiltonian cycle; (3) strongly hamiltonian if D has arcs and each arc lies on a hamiltonian cycle; (4) hamiltonian-connected if D has a hamiltonian u-v path for every pair of distinct vertices u and v; (5) k-path traceable if every path of length not exceeding k is contained in a hamiltonian path; and (6) k-path hamiltonian if every path of length not exceeding k is contained in a hamiltonian cycle.

The indegree and the outdegree of a vertex v are denoted by id(v) and od(v) respectively. A digraph D of order p is of *Ore-type* (k) if $od(u) + id(v) \ge p + k$ whenever u and v are distinct vertices for which uv is not an arc of D.

In this research announcement we outline a proof of the following result, a complete proof of which will appear elsewhere, and present some consequences of it.

THEOREM. If a nontrivial digraph D is of Ore-type (k), $k \ge 0$, then D is k-path hamiltonian.

PROOF. Let D have order $p \ge 2$. First, observe that D is strong. Since the result holds if D is the complete symmetric digraph K_p , we assume that $D \ne K_p$. This in turn implies that $p \ge k+4$. Also, it can be shown that every path of length not exceeding k is contained in a path of length (k+1) and this longer path is contained in a cycle.

Suppose D has a path $P: v_1, v_2, \ldots, v_{k+1}$ of length k which is contained in no hamiltonian cycle. Let $C: v_1, v_2, \ldots, v_n, v_1$ be any longest cycle containing P. Then, $V \equiv V(D) - V(C) \neq \emptyset$, where V(D) and V(C) denote the vertex sets of D and C respectively.

Now, assume that V has distinct vertices u and v for which $uv \notin E(D)$ and the subdigraph $\langle V \rangle$ induced by V has no v-u path. Then, $vu \notin E(D)$ implies that

(1)
$$p + k \le \operatorname{od}(v) + \operatorname{id}(u) \le p - n - 2 + \operatorname{od}(v, C) + \operatorname{id}(u, C)$$

where od(v, C) and id(u, C) denote the number of vertices in C which are

AMS (MOS) subject classifications (1970). Primary 05C20.

Key words and phrases. Digraphs, traceable, hamiltonian, hamiltonian-connected, strongly hamiltonian, k-path hamiltonian, k-path traceable.

dominated by v and dominate u, respectively. Then (1) implies that $n+k+2 \le \operatorname{od}(v,C) + \operatorname{id}(u,C)$ and this implies that $\langle V \rangle$ has no u-v path. For suppose that $\langle V \rangle$ has such a path. Since C is a longest cycle containing P, the digraph D cannot contain both of the arcs $v_i u$ and $v v_{i+1}$ for $k+1 \le i \le n$. But this implies that $\operatorname{id}(u,C) + \operatorname{od}(v,C) \le n+k$ and this is a contradiction. Using the fact that $uv \notin E(D)$, we obtain

$$p + k \le \operatorname{od}(u) + \operatorname{id}(v) \le p - n - 2 + \operatorname{od}(u, C) + \operatorname{id}(v, C)$$

which also implies that $n + k + 2 \le od(u, C) + id(v, C)$. Together with the preceding result, this implies that either

$$n + k + 2 \le od(u, C) + id(u, C)$$
 or $n + k + 2 \le od(v, C) + id(v, C)$.

In either case, it follows that D has a longer cycle containing P which is impossible. Thus, for distinct vertices u and v of $\langle V \rangle$, either $uv \in E(\langle V \rangle)$ or $\langle V \rangle$ has a v-u path. If $\langle V \rangle$ has a v-u path, then $od(u, C) + id(v, C) \leq n + k$. Thus,

$$od(u, \langle V \rangle) + id(v, \langle V \rangle) \ge p - n = |V|$$

whenever $u \neq v$ and $uv \notin E(\langle V \rangle)$. Hence, $\langle V \rangle$ is strongly connected.

Let W be the subpath $v_{k+1}, v_{k+2}, \ldots, v_n, v_{n+1} = v_1$ of C. Since $n \ge k+2$, the path W has order at least 3; in fact W has at least 3 vertices which are dominated by vertices of V and at least 3 vertices which dominate vertices of V. It now suffices to consider the following two cases: (i) the path W has a nontrivial subpath W' whose initial vertex dominates a vertex of V and whose terminal vertex is dominated by a vertex of V; and (ii) the path W has no such subpath. Since consideration of either case leads to contradiction, our assumption that $V \ne \emptyset$ must be false. Hence, C is a hamiltonian cycle and the theorem follows.

Let $m, n \ge 1$ and $k \ge 0$. The symmetric join $K_{k+2} + (K_m \cup K_n)$ of K_{k+2} and the disjoint union of K_m and K_n is an Ore-type (k) digraph which is not (k+1)-path hamiltonian. Hence, the result is "best possible."

The preceding result generalizes several results from graph theory and digraph theory, which we present below.

COROLLARY. If the digraph D is of Ore-type (k), $k \ge -1$, then D is (k+1)-path traceable.

COROLLARY (WOODALL [5]). If a nontrivial digraph is of Ore-type (0), then it is hamiltonian.

COROLLARY. If a nontrivial digraph is of Ore-type (1), then it is both strongly hamiltonian and hamiltonian-connected.

A (undirected) graph of order p is of Ore-type (k) if the sum of the degrees

of nonadjacent vertices is at least (p + k). By considering symmetric digraphs, we obtain the following results.

COROLLARY (ORE [3]). If a graph with order at least 3 is of Ore-type (0), then it is hamiltonian.

COROLLARY (ORE [4]). If a graph is of Ore-type (1), then it is hamiltonian-connected.

COROLLARY (KRONK [2]). If a graph of order $p \ge 3$ is of Ore-type (k), $k \ge 0$, then it is k-path hamiltonian.

COROLLARY (KAPOOR AND THECKEDATH [1]). If a graph is of Ore-type (k), $k \ge -1$, then it is (k+1)-path traceable.

REFERENCES

- 1. S. F. Kapoor and K. K. Theckedath, *Highly traceable graphs*, Sankhyā Ser. A 33 (1971), 211-216. MR 47 #3254.
- 2. H. V. Kronk, A note on k-path Hamiltonian graphs, J. Combinatorial Theory 7 (1969), 104-106. MR 39 #6772.
- 3. O. Ore, *Note on Hamilton circuits*, Amer. Math. Monthly 67 (1960), 55. MR 22 #9454.
- 4. Hamilton connected graphs, J. Math. Pures Appl. (9) 42 (1963), 21-27. MR 26 #4336.
- 5. D. R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. (3) 24 (1972), 739-755. MR 47 #6549.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40208