CONVERGENCE OF FOURIER SERIES ON COMPACT LIE GROUPS¹

BY ROBERT J. STANTON AND PETER A. TOMAS

Communicated by James Bramble, September 15, 1975

Let G be a compact connected semisimple Lie group. Fix a maximal torus T and denote its Lie algebra by $\mathfrak T$. The irreducible unitary representations of G are indexed by a semilattice L of dominant integral forms on $\mathfrak T$. For each λ in L let χ_{λ} and d_{λ} be the character and degree of the representation corresponding to λ .

By the Fourier series of a function f on G we mean the formal series $\sum_{\lambda \in L} d_{\lambda} \chi_{\lambda} * f$. In this paper we announce results concerning the convergence properties (both mean and pointwise) of polyhedral partial sums of these Fourier series. Details and proofs will appear elsewhere.

Let P be an open, convex polyhedron in $\mathfrak T$ centered at the origin. Assume P is Weyl group invariant. Let $RP = \{RX | X \in P\}$ and $S_R f(g) = \Sigma_{\lambda \in RP} d_{\lambda} \chi_{\lambda} * f(g)$.

THEOREM A. If $p \neq 2$ there is an f in $L^p(G)$ such that $S_R f$ does not converge to f in the L^p norm.

An immediate corollary of this theorem is that when p < 2 almost everywhere convergence fails for some f in $L^p(G)$. However, the convergence behaviour of Fourier series of functions having invariance properties, in particular class functions, is markedly different.

A class function is a function f such that $f(gxg^{-1}) = f(x)$ for all g in G and almost all x in G. Let $L_I^p(G)$ denote the p-integrable class functions. For f in $L_I^p(G)$,

$$d_{\lambda}\chi_{\lambda} * f(g) = \left(\int f(x)\overline{\chi_{\lambda}(x)}\,dx\right)\chi_{\lambda}(g).$$

Let $n = \dim G$ and $l = \operatorname{rank} G = \dim T$.

We now assume that G is a simple, simply connected compact Lie group.

THEOREM B. If p > 2n/(n+l) and f is in $L_I^p(G)$ then $S_R f(g)$ converges to f(g) for almost all g.

THEOREM C. If p < 2n/(n+l) or p > 2n/(n-l) there is an f in $L_I^p(G)$ such that $S_R f$ does not converge to f in the L^p norm.

AMS (MOS) subject classifications (1970). Primary 43A75, 42A18.

¹This research was supported in part by NSF Grant MPS75-05577.

REMARKS. Clerc [1] has proved Theorem A for spherical partial sums. The argument for polyhedral partial sums involves a reduction to the rank one case. If the rank of G is one, Theorem B is due to Pollard [4] while Theorem C was obtained by Wing [6]. For general rank a slightly weaker version of Theorem C was obtained by Stanton [5]. The proofs of our results are extensions of the rank 1 arguments coupled with Fefferman's results [2], [3]. A calculation of the integrability of powers of Weyl's Δ -function and a related function provided the critical indices.

We wish to thank Professors C. Fefferman and A. W. Knapp for several helpful conversations on these topics.

BIBLIOGRAPHY

- 1. J. L. Clerc, Thèse, Université Paris XI, 1973.
- 2. C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330-336. MR 45 #5661.
- 3. ———, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744-745.
- 4. H. Pollard, The convergence almost everywhere of Legendre series, Proc. Amer. Math. Soc. 35 (1972), 442-444. MR 46 #2115.
- 5. R. J. Stanton, On the mean convergence of Fourier series on compact Lie groups, Trans. Amer. Math. Soc. (to appear).
- 6. G. M. Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950), 792-808. MR 12, 329.

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77001

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY ${f 08540}$