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Introduction. Each President of the American Mathematical Society is 
required to present a retiring presidential address. By custom, this address is 
not in any way directed to the examination of the administrative or profes­
sional problems of the Society. This is not because these problems are 
unimportant, but is presumably because the President's contribution to them 
should have long since been made, or not made, as the case may be, well 
before his retirement from office. Instead the custom is that the President's 
address is concerned with contributions to our science. This is a good 
custom, since it is the mathematical theorems and the solutions of 
mathematical problems which possess the quality of permanence and the 
symmetry of structure which is our primary objective in mathematics. 

My own research work has been largely concerned with aspects of 
algebra—a variety of aspects by no means covering all of algebra, but chiefly 
involved in some explorations of the relation between algebra and the 
neighboring fields of logic and geometry. These studies have given me the 
lively impression that many of the ideas of algebra do indeed arise from 
these other fields, and that this origin highlights the sense in which the 
science of mathematics exemplifies the interdependence of its parts. Hence, 
this address will be devoted to an examination of certain of the ways in 
which the problems from geometry and logic arising in my own research 
work have illuminated algebra or contributed new concepts to that field. 

1. Separable extensions. My first example is a problem in the theory of 
fields whose solution required the use of ideas from geometry—more 
exactly, ideas about an axiomatic treatment of linear independence. 

1 Delivered at the 81st Annual Meeting of the American Mathematical Society in Washing­
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The problem begins with number theory. Here the treatment of various 
arithmetic questions had been effectively formulated in terms of the p-adic 
numbers. Recall that these numbers arise from studying the divisibility 
properties of rational numbers vis-a-vis a fixed prime number p. Each 
rational x^O may be written as x=pe(m/n) for some integral exponent e 
and integers m and n prime to p. Then the function Vx=e assigning to x 
the exponent of p defines the "exponential" p-adic valuation V of x, with 
the formal properties 
(1.1) V(xy) = Vx + Vy, V(x + y)^Min(Vx, Vy) 

for all x, y 5^0. The corresponding norm on the field Q of rational numbers 
is |x |=exp(-Vx). Completing Q with respect to this norm yields the field of 
p-adic numbers. The p-adic integers are then the x with Vx^O, and the 
ring of p-adic integers has a unique maximal ideal (all x with Vx>0), so 
that the integers modulo this ideal form a field, called the residue field. In 
this case, it is the familiar finite field with p elements. This structure 
uniquely determines the p-adic numbers: They are characterized (essen­
tially) as a complete field with valuation having this residue field, and 
maximal ideal generated by p. 

There is a similar structure theorem for more general p-adic fields. Let K 
be a field of characteristic 0 with an integer valued valuation V with the 
properties (1.1), complete in the corresponding norm. Its residue field k is 
again formed as the ring of its integers modulo the maximal ideal, and K is 
called p-adic if k is of characteristic p (whence Vp>0) and the prime p 
generates the maximal ideal (K is "unramified" over the prime field). The 
structure theorems then state that such a p-adic field is determined, up to 
analytic isomorphism, by its residue field k. 

Initially, I was engaged in finding two sorts of enlargements of this basic 
structure theorem—on the one hand, a structure theorem for complete fields 
with a valuation of higher rank [62]; on the other hand, a relative structure 
theorem [65], [66]. Is a complete and unramified extension L of K deter­
mined (up to relative analytic isomorphism) by the corresponding extension 
of the residue-class field? For both purposes I needed to examine more 
carefully the proof of the original "absolute" structure theorem for un­
ramified complete fields. Here the uniqueness of the field K0 of p-adic 
numbers for their residue field k0 (the field of integers modulo p) is 
established first; then the whole complete field K is obtained by inter­
mediate stages, each stage complete, and each corresponding to a stage in a 
step-by-step extension of the residue fields from k0 to the whole residue 
field k. Typically one considers first transcendental extensions, by indepen­
dent indeterminates x, y, z, • • •, and then a final algebraic extension to get 
all of k as a tower 

k0c=ko(x)c:ko(x, y ) c - • • c k0(x, y, z, • • -) = k'<=k. 

Within the given field K one can try to construct a corresponding tower of 
p-adic fields 

K 0 c K i c K 2 c . . c K ' c K , 
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with these respective residue fields. Specifically, if x is transcendental over 
ko, any element X in the coset x is transcendental over k0, and we may take 
Ki to be the completion of K0(x). In the remaining case, if a is algebraic 
over k', satisfying a separable polynomial equation, then the "Hensel-
Rychlik" lemma will produce a corresponding element A algebraic over K'. 
However, this lemma really uses separability: A separable extension is one 
generated by roots of an irreducible polynomial whose roots are all differ­
ent. This is the same notion of separability as that which arises in the Galois 
theory, where the standard correspondence between subgroups of the Galois 
prime and intermediate fields of a normal algebraic extension holds when 
that extension is separable. 

However, it is precisely for fields of characteristic the prime p that 
inseparability can arise. For such fields, the binomial theorem for pth 
powers has the well-known simplified form: 

(b+c)p = bp + cp. 

In consequence, an equation X p - a = 0 over such a field k0, which may well 
be irreducible over that field, can have only one root a in any extended 
field, because <xp = a and so (x-a)p=xp-a. This can happen unless k0 is a 
perfect field of characteristic p; that is, a field containing pth roots of all of 
its elements. By the little Fermât theorem, finite fields are perfect, but there 
are many infinite fields, such as transcendental extensions k0(x), which are 
not. 

These observations about separability at first seemed to indicate that the 
structure theorems for p-adic fields worked well only when the residue field 
k was separably generated over k0, in the sense that k can be obtained from 
ko by the successive adjunction of elements each of which is either transcen­
dental or separable and algebraic over the previously generated field. When 
k can be so generated, those elements which are transcendental can, for 
convenience, be adjoined first. This shows that k is separably generated over 
ko if and only if it has over k0 a separating transcendence base: a string of 
elements x, y, z, • • • which are algebraically independent over k and such 
that k is separable and algebraic over the field k0(x, y, z, • • •) which they 
generate. 

This use of separably generated extensions had led H. Hasse and F. K. 
Schmidt to an elaborate study of inseparably generated extensions in terms 
of Steinitz "towers" of separably generated extensions. Difficulties with this 
theory [64] persuaded me to think that the crucial problem was that of 
finding criteria for the existence of separating transcendence bases. There 
were striking examples of fields which did not have such bases; for example 
(Mac Lane [63, p. 384]) when k0=P(x, y) where P is a "perfect" field (for 
example, a finite field) and x and y are algebraically independent, while 
k = ko(z, u) with z transcendental over k0 and u the root of the inseparable 
equation 

(1.2) up = y+xzp, 
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irreducible over fc0(z). To be sure, one could solve equation (1.2) for y and 
so observe that this whole field k is k=P(u, z, x) and thus is separably 
generated, with u, z, and x as the separating transcendence basis, over the 
original perfect field P. Unfortunately, this difficulty cannot always be 
removed just by starting from a perfect field P, as for example in the field 
k2=P(to, ti, • • • ,y2 , y3, • • •) arising from P by adjoining two strings of 
elements tn and yn subject only to the algebraic relations 

(1.3) yPn+2=tn+tn + l(tn+2)\ U = 2, 3 , 4, • • • . 

This field k2 simply cannot be separably generated over P, a sorry fact which 
I had observed (Mac Lane [63, p. 386] and [64, p. 39]) in studying some of 
the difficulties with the Steinitz towers. 

Study of example (1.2)—or similarly of (1.3)—might suggest that the 
trouble lies in the fact that equation (1.2) makes the pth root of y 
expressible in terms of the pth root of x, although in the original field P(x, y) 
these roots are "independent." Now Teichmiiller [94], [95] had disengaged 
a notion of p-independence. An element z of a field k0 of characteristic p is 
said to be p-dependent on elements yi, • • • , yn of k0 when 

(1.4) z 1 / p Gko(yî / p , - - ? yi / p ) ; 
correspondingly, elements xi, • • •, xm are p-independent in ko where no 
one of them is p-dependent on the others. 

At this point, geometry entered; more exactly linear geometry. Hassler 
Whitney had studied ordinary linear independence relations with a view to 
understanding the combinatorial structures called "matroids" (Whitney 
[102], Mac Lane [60]). Stimulated also by the ideas of Garrett Birkhofï and 
O. Ore, I had observed [61] that these notions of independence could be 
formulated axiomatically in terms of lattices (here, the lattice of inter­
mediate fields). For ordinary linear independence Steinitz had shown that 
the invariance of dimension of a vector space rested on the exchange 
property. This property was still present for p-dependence: If z is p-
dependent upon yi? • • • , y„ but not on yi, • • • , y„-i, then yn is p-dependent 
on yi, • • • , y„_i, z. Moreover, the lattice involved in this exchange property 
need not be a modular lattice, a surprise for lattice theorists (see Mac Lane 
[61, p. 463]). 

For fields of characteristic p, an extension k => k0 is said to preserve 
p-independence when each subset of k0, p-independent in k0, remains 
p-independent in the larger field k. This concept explains the trouble in the 
example of (1.2), where the elements JC and y of k0 are algebraically 
independent over P and hence p-independent in k0, but do not remain 
p-independent in k—precisely because equation (1.2) can be used to express 
the pth root of x in terms of the pth root of y. Using this concept, I was able 
to prove 

THEOREM 1. An extension k=>k0 of fields of characteristic p preserves 
p-independence if and only if ko(yi, • • -, y«)=> ko is separably generated for 
each finite string of elements yi, • • • , yn of k. 
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COROLLARY. A finitely generated extension can be separably generated if 
and only if it preserves p-independence. 

This concept also served to settle the relative structure problem for p-adic 
fields (Mac Lane [66]): 

THEOREM 2. Let k be any extension of the residue class field k0 of a given 
p-adic field K0, and let K and L be two p-adic extensions of K0, both with the 
same residue class field k. Then the identity automorphism of K0 can a/ways 
be extended to an isomorphism K->L which is analytic (i.e., preserves the 
valuation) and induces the identity on k if and only if the extension k=>k0 of 
residue fields preserves p-independence. 

This completed the structure problem for p-adic fields, and shifted the 
problem to determining which extensions are separably generated. For fields 
of characteristic p, A. Weil [100] and N. Bourbaki [8] called an extension 
k=>k0 separable precisely when it preserves p-independence. For an alge­
braic extension, this agrees exactly with the classical notion, and it makes the 
Corollary to Theorem 1 read "A finitely generated extension is separably 
generated if and only if it is separable." From this point on, the notion of 
separability became a small part in the field-theoretic treatment of algebraic 
geometry, relating in particular to the study of "linearly disjoint" extensions 
(Weil [100]). But in the process, the algebraic study of fields had profited 
essentially from Teichmüller's observations that the "geometry" of linear 
dependence is like that of p-dependence, plus the fact that this study has a 
general lattice-theoretic form. 

2. Homological algebra. The idea of finding the "homology" of an 
algebraic system—of a group, of a Lie algebra, or of an associative algebra— 
was clearly derived from the study of the homology (i.e., the connectivity) of 
a topological space. Originally, following Poincaré, the connectivity of a 
space had been described just in terms of its Betti numbers and torsion 
coefficients. Then it was reputedly Emmy Noether who had pointed out to 
Paul Alexandroff in Göttingen that the Betti number and the torsion 
coefficients in each dimension must really be the set of invariants of some 
finitely generated abelian group—the homology group of the space in that 
dimension. Noether emphasized that the proper subject of study must be 
this group. 

The use of homology groups was soon systematized. They are usually 
described algebraically in terms of chains and their boundaries. An n-
dimensional chain is a formal linear combination of n-simplices (either a 
simplex in a given triangulation of the space or any singular (continuous) 
simplex in the space). In any event, all the n-chains form a free abelian 
group G , and the sequence of these groups, with the corresponding bound­
ary homomorphisms d, is a chain complex. 

(2.1) C : Co *-*— G <-*- G <-* +±- Cn <-*— Cn+i • • • 
with dd = 0. Its homology in dimension n is the quotient group 
(2.2) Hn = Hn(C) = {Kernel d : C -* Cn-i}/{Image d : G+i -* G } . 
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This is the "integral" homology of the complex (or the underlying space); 
from the beginnings (see Veblen's Analysis situs [97]) one had also used the 
homology modulo 2, formed by first reducing each free group Cn modulo 2, 
then forming H„. J. W. Alexander had also pointed out the utility of chains 
formed modulo a prime p, i.e., with "coefficients" in Zp. For example, an 
outstanding question was that of finding the homotopy classes of continuous 
maps g:Kn->Sn of an n-dimensional polyhedron Kn into the n-sphere Sn ; 
H. Hopf had found a solution, expressed elaborately in terms of the action 
of g on the various homology groups of the complex Kn for various 
coefficients, Hn(Kn, Z) and Hn(Kn ,Zp) . 

Hassler Whitney [103] saw how to simplify this result by formulating it in 
terms of cohomology (an idea possibly also suggested by the de Rham 
process of measuring connectivity in terms of "closed" and "exact" differen­
tial forms). Using "coefficients" in any abelian group A, an n-dimensional 
cochain of the complex C is a homomorphism ƒ : Cn—»A of abelian groups, 
its coboundary 8f is the composite homomorphism 

(2.3) 8f = fd:Cn+1-^
L>Cn >A, 

the groups Cn of all n-cochains again form a chain complex 

(2.4) • Cn = Hom(Cn, A) —2-> Cn+1 = Hom(Cn-M, A) > • • • 

with cocycles (the kernel of 8) and coboundaries (image 8) yielding 

(2.5) Hn(Q A) = {Ker 8 : Cn -» Cn+1}/{Image 8 : Cn _ 1 -* Cn}, 

the cohomology of the complex C (or of the associated space) with coeffi­
cients in A. Each morphism h : C-^>C' of chain complexes then yields a 
morphism of cohomology 

(2.6) h:C-^ C'H»h*:Hn(C, A ) - » Hn(C, A) 

in the opposite direction. In particular, the integral cohomology of the 
n-sphere is infinite cyclic in dimension n, Hn(Sn , Z)=Z. Under any continu­
ous g:Kn-*Sn from an n-complex Kn, the image of a generator under g* is 
then a single cohomology class in Hn(Kn, Z), and this one cohomology class, 
according to Whitney, suffices to describe the map g up to homotopy 
equivalence. This was the decisive result which made it clear that cohomol­
ogy belonged together with homology in the topological descriptions of 
connectivity. 

At the same time, Whitney introduced the notion of tensor products of 
abelian gioups—a notion perhaps already implicit in multilinear algebra. 
These tenr :>r products clarified the meaning of coefficient groups for homol­
ogy. Initially, the homology of a complex C modulo the prime p (say, for 
p = 2) had been described as the homology of the chain complex formed by 
simply taking each chain group Cn "modulo p." As long as d is just a free 
abelian group, generated by simplices, this description is fine; one simply 
takes the free vector space over Zp generated by the same simplices. For 
more general groups C a more invariant description was needed; it is 
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provided by taking the tensor product Zp®Cn. Again, the boundary 
homomorphism for the original complex induces a boundary homomor-
phism on the "tensored" chains 

(2.7) l<8>d:Zp<8>Cn->Zp<g>Cn-i 

(with 1 denoting the identity map of Zp), and the homology with coefficients 
Zp is the homology of the resulting complex. This done, one also can form 
the homology of C with coefficients in any abelian group G by forming the 
complex G®C and taking its homology as 

(2.8) Hn(C,G) = Hn(G®C). 

By this development, the study of connectivity of spaces has led directly to 
the formulation of the two basic functors 

(2.9) G<S>C, H o m ( Q A ) 

of homological algebra. They have appeared here as constructions on 
abelian groups G, C, and A, but they also apply at once to modules over any 
commutative ring. Moreover, it was again a geometrical question which led 
to the study of the corresponding derived functors 

(2.10) Tor(G, C), Ext(C,A) 

and hence to the whole notion of derived functors in homological algebra. 
For example, Hopf's homotopy classification theorem for maps g :K n -» 

Sn in terms of the homology of the polyhedron Kn had been reformulated 
by Whitney in terms of the cohomology of Kn. This suggested, to Steenrod 
and others, that cohomology must somehow be expressible in terms of 
homology. Since cochains of a complex C are by définition homomorphisms 
of chains ƒ : Cn-*A, each cocycle (/with of = 0) is a homomorphism of cycles, 
and this assignment yields a "natural" homomorphism 

(2.11) Hn(C, A) -> Hom(Hn(C), A). 

For A (the additive group of) a field, this is an isomorphism, but not for more 
general A's . Hence arose the problems of expressing the whole cohomology 
group of the complex C in terms of this homomorphism and other construc­
tions; it was called the problem of "universal coefficients" because it was 
intended that the solution be given by saying that the cohomology is 
determined by giving the homology Hn(C, G) for a specified list of coeffi­
cient groups G, called the "universal" coefficients, perhaps G = Z and all the 
groups Zp. 

The final solution turned out to have a different conceptual structure. 
First, and easily, the homomorphism (2.11) is onto, so the problem is 
essentially that of finding its kernel. This was done in the first joint 
Eilenberg-Mac Lane paper [20], which showed that this kernel could be 
expressed as the group Ext(H„_i(C), A) of all abelian group extensions of A 
by Hn-i. This actually yields an expression of cohomology as a direct sum 

(2.12) Hn(C, A) = Ext(Hn-i(C), A)0Hom(H n (C) , A), 
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but the isomorphism to the direct sum is not necessarily "natural" for 
variable C. Hence the invariant description of the resulting "universal 
coefficient" theorem states only that there is a (natural) short sequence 
which is exact (kernel=image at each point): 

(2.13) 0-»Ext(Hn-i(C), A)-> Hn(C, A)-^Hom(Hn(C), A) -* 0. 

Moreover, Eilenberg-Mac Lane showed how to calculate the new group Ext 
from any representation of the homology Hn-i(C) as F/R, for F a free 
abelian group and R a subgroup. Such a representation is in fact itself a 
short exact sequence 

(2.14) O -* R -> F-^Hn-tiQ ->0; 

that is, what is now called a free (and therefore projective) resolution of the 
abelian group Hn-i(C). 

The corresponding universal coefficient question for homology is resolved 
by a corresponding short exact sequence (Mac Lane [71, Theorem V.ll.l]), 

(2.15) 0-^H n (C)®G^Hn(C,G)^Tor(Hn- i (C) ,G)^0, 

involving another basic new functor, the torsion product Tor. Originally, in 
the hands of Cech, this group Tor was described in terms of generators and 
relations (Mac Lane [71, V.6]). Cartan-Eilenberg showed that it could be 
calculated from resolutions like (2.14) and hence that it was a derived functor 
in the general sense they developed for homological algebra. 

Thus the algebraic constructions Ext(B, A) and Tor(B, G) on groups B, 
A, and G (or on modules) owe their origin to specific questions of algebraic 
topology. The resulting rapid development of homological algebra has 
considerably influenced ring theory and algebraic geometry. 

3. The cohomology of groups. The study of a group involves not just the 
group itself, but its actions on other objects; for example, on vector spaces 
or modules. The cohomology of groups deals with such a situation: the 
action of a group G on an (additive) abelian group A. Specifically, let G act 
on the left on A, so that each element x e G is represented as an au­
tomorphism 

a*->xa, as A, 

of A, with the usual rules 

x(a + b) = xa+xb, (xy)a =x(ya), la = a. 

For example, G might be the Galois group of a field K, consisting of 
endomorphisms of K, while A is the additive or multiplicative group of K. 
Again, G might be a group of transformations of a space and A a homology 
or homotopy group of that space. Finally, A might be an arbitrary abelian 
group on which every element x of G acts as an identity automorphism; this 
is called the trivial action of G on A. 

For any such action of G on A, the cohomology of G with "coefficients" 
in A was defined, dimension by dimension, in terms of certain "cocycles" 
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which are functions on G to A satisfying appropriate identities. In dimen­
sion 1, these cocycles are the crossed homomorphisms: functions h on G to 
A which satisfy the identity 

(3.1) h(xy) = x(hy) + hx 

for all elements x and y of G. In particular, if the action of G on A is trivial, 
this equation becomes h(xy)=hy+hx, so in this case a "crossed" 
homomorphism is just an ordinary homomorphism G-»A. On the other 
hand, for a nontrivial action there are always such crossed homomorphisms; 
indeed for each element a in A one can define a principal crossed 
homomorphism ka by 

kax = xa — a, xeG. 

Also, the pointwise sum of two crossed homomorphisms hi and h2, defined 
by 

(hi + h2)x = hix + h2x, 

is again a crossed homomorphism, and the crossed homomorphisms form a 
group under this addition. Now count as equivalent crossed homomorphisms 
h and h+ka for any principal crossed homomorphism ka. Then we want the 
equivalence classes of crossed homomorphisms; they are cosets, hence 
elements of a factor group now called the one-dimensional cohomology 
group H\G, A) : 

H\G, A) = {h : G -> A a crossed homo}/{k a principal c.h.}. 

The two-dimensional analog of this group is defined similarly from "factor 
sets". For the same data (G acting on A), a factor set ƒ of G in A is a 
function f:GxG-*A which satisfies the equation 

(3.2) xf(y, z) + /(x, yz) = f(xy, z) + /(x, y) 

for all x, y, and z in G. Again, the set of all solutions ƒ of this equation 
forms a group under pointwise addition. Again, this equation (3.2) has 
"trivial" solutions; each function h on G to A determines a solution /K, 
called a transformation set, by the formula 

(3.3) fh(x,y) = x(hy)-h(xy) + h(x). 

The two-dimensional cohomology group H2(G, A) is now defined as 

H2(G, A) = { / : G x G ^ A a factor set}/{/ = fh a trans, set}. 

In other words, it is the group of all solutions of (3.2), counting solutions as 
equivalent when they differ by a formally trivial solution. 

These definitions of ^(G, A) and H2(G, A) were chosen to study certain 
particular circumstances. The most important circumstance is given by a 
group extension E of A by G ; that is, a multiplicative group E with A as 
normal subgroup and G=E/A the corresponding quotient group. Such an 
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extension may be presented as a sequence of groups and group homomorph-
isms with is exact: 

(3.4) 0 > A >E -S-* G > 1. 

(A and E are written additively and G multiplicatively, for convenience 
below.) For any such extension, G does act as a group of automorphisms of 
A, the action of each xeG being given by conjugating the elements of A by 
any element in the coset of E determined by x. Thus, choosing for each 
x G G a representative element u(x) in that coset, all the elements of E have 
the form a+u(x) and the action of x is given by 

(3.5) xa = u(x) + a — u(x), xeG, aeA, 

and is independent of the choice of u(x) in its coset. 
On the other hand, consider automorphisms 0 :E->E which leave every 

element of A and every coset of G fixed. Such an automorphism Û carries 
each representative u(x) into some other element in the same coset, say 
<9(u(x))=hx+u(x), where h is then a function h:G->A. This function h 
actually determines the action of the automorphism Û on all elements 
a+u(x) of E; moreover, an easy calculation shows that the Û determined by 
this formula is an automorphism if and only if h : G-> A is a crossed 
homomorphism. Also, the principal crossed homomorphisms ka correspond 
to conjugation (i.e., give Û the conjugation by —a). Hence, the one-
dimensional cohomology group is exactly the group of equivalence classes of 
such automomorphisms Û. 

Next consider how the "addition table" of the elements a+u(x) of the 
group E might be constructed from the addition of A and the multiplication 
of G. The sum of two coset representatives w(x) and u(y) must lie in the 
coset of the product xy, and so must have the form 

(3.6) u(x) + u(y) = /(x, y) + u(xy), 

where ƒ is then a function f:GxG->A. This function ƒ determines the 
whole addition table of E, while an easy calculation shows that the resulting 
addition is associative if and only if this function ƒ satisfies (3.2), and so is a 
factor set. Moreover, a change in the choice of coset representatives, from 
w(x) to (say) h(x)+u(x), simply adds to the factor set ƒ the transformation 
set fh. Hence the two-dimensional cohomology group is exactly the group of 
all (equivalence classes of) those extensions E of A by G which realize the 
given action of G on A. 

Classically, the subject stopped here at dimension 2. There were several 
indications that it was not really complete. For example, the "2-
dimensional" factor sets also arose in class field theory, in the case when G 
is the Galois group of a finite separable normal extension N=>K of fields. If 
we take A to be the multiplicative group N* of nonzero elements of the 
field N and so rewrite (3.6) in multiplicative form as u(x)u(y)=/(x, y)u(xy), 
then the factor set ƒ determines via this formula and distributivity a 
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multiplication table on the vector space D consisting of all finite formal 
sums X cixu(x) with axeN (i.e., the vector space D over N with basis the 
u(x) for xeG). Moreover, this multiplication table makes D a central 
simple algebra over the base field K. These D are the crossed product 
algebras first investigated (in many special cases) by L. E. Dickson and his 
students and then baptised (as "verschrânkte produkte") by Emmy Noether. 
They were used extensively in local class field theory, in the special case 
when K is a local field (of p-adic numbers); in this case the crossed product 
algebras formed from N give (up to "similarity") all central simple algebras 
over K which are split by N. Hence they could be used to analyse the 
Brauer group of similarity classes of algebras over K 

O. F. G. Schilling, in joint work with the author, made a substantial 
attempt [78] to extend the class field theory from abelian extension fields to 
general normal extensions. The attempt did not succeed, but it did leave us 
with the clear impression that the 2-dimensional factor sets were not 
enough; something "higher up" was going on. At about the same time, 
Teichmüller's study of noncommutative Galois theory [96] led him to 
consider algebras C which were central simple over the field N (of the 
extension N^>K); he called such algebras "G-normal" when every au­
tomorphism x of the Galois group G of N^>K could be extended to an 
automorphism of the algebra C, and he showed (by devices like the 
considerations of the obstructions to be indicated below) that each such 
algebra gave rise to a function t:GxGxG-*N* which satisfied a three-
dimensional identity like that for factor sets: 

(3.7) xt(y, z, u)t(x, yz, u)t(x, y, z) = f(xy, z, u)t(x, y, zu) 

for all x, y, z, u e G. He was evidently aware that there were analogous 
identities of dimension higher than 3. 

A unified understanding of these identities came from topology. It had 
long been known that the fundamental group IIi(X) of an arcwise connected 
space X determined the first integral homology group Hi(X); indeed Hi is 
just ui modulo its commutative subgroup. Heinz Hopf in [44] and [45] 
studied the influence of 111 on the second integral homology group H2(X), 
and found that IL determined not all of H2 but a certain quotient group 
H2(X)/S2(X), where S2(X) is the subgroup of H2(X) spanned by those 
two-dimensional cycles represented by 2-spheres. The situation simplifies if 
X is a space with vanishing second homotopy group II2(X); for then 
S2(X)=0 and Hopf's result states that IL(X) determines H2(X)—moreover, 
it determines H2 by an explicit formula. Going beyond this, Hopf [46] 
considered spaces with n2=n3=- • -=IIq-i = 0 and showed that the funda­
mental group III of such a space does determine all the integral homology 
groups Hi, H2, • • • , Hq-i and a (suitable) quotient group of Hq(X). He gave 
no explicit formula for this latter determination. 

Eilenberg and I decided that there ought to be an algebraic formula 
expressing this determination. It turned out to be more convenient to 
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describe a formula to determine the co homology of X; that is, the cohomol-
ogy of the singular complex of X. Eilenberg had just completed the 
definitive description of this complex S(X), to consist of chain groups Sn and 
boundary homomorphisms 

(3.8) s (X) :S 0 «-* -S i<-2 -S 2 ^ + - ^ Sn-! ^ - S n «-̂  

with dd=0 and Sn the free abelian group with generators all singular 
n-simplices T; i.e., all continuous maps T:An—»X from the standard n-
simplex A„. Then dT is just the alternating sum of the n +1 faces of T; each 
regarded as a map A„-i—»X. Since X is arcwise connected, one may fix a 
base point p and assume that all the singular simplices send each vertex of 
An to that base point p. A singular 1-simplex T:Ai—>X is then just a 
continuous path from p to p, and hence represents an element x eIL(X). In 
the same way each n-simplex T:An—>X for n>\ determines on each edge 
of A„ an element of the fundamental group; thus T may be pictured by the 
pattern of those edge elements, as in 

2 
/ \ 3 z 2 

xy/ \ y 
(3.9) i 1 / \ 

0 * 1 / 

0 x 1 
0 x 1 

Numbering the vertices in order, the edges 01 and 12 in the triangle 
represent elements x, y in üi. Their product, in the fundamental group ui, is 
the path 01 followed by 12, hence is equal (is homo topic to) the element 
represented by the edge 02 of A2. When II2=- • •=nq-i=0 in the space X, 
two simplices (in dimensions less than q) with the same edge patterns will be 
homotopic; this observation reduces the singular complex to a so-called 
minimal subcomplex with one simplex for each possible edge pattern. For a 
simplex of n-dimensions, this pattern is described by n elements Xi, • • •, xn 

of Ili(X)—the elements on the edges ( i -1 , i). Thereby the original singular 
chain complex S(X), defined topologically, is replaced by a complex B(U) 
determined algebraically by 11=IL. This complex B(U) consists of groups 
B„=Bn(II) and boundary homomorphisms 

(3.10) B(n i ) :B 0 <-^B! < B2< < Bn-, ^-Bn • • • 

where B„ is the free abelian group generated by the elements [xi, • • • , x„], 
taken for all choices of xt e IL. The boundary of each generator [xi, • • • , x„] 
may be read off from the geometric figure as the alternating sum of the edge 
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pattern on the faces. In particular, this yields the formulas: 

d[x,y] = [y]-[xy] + [x], 

d[x, y, z] = [y, *]-[xy, z]+[x, yz]-[x, y], 
n - l 

d[Xl, • • • , XnJ = [X2, * * * , Xn + l ] + 2^ V l ) [ X l , * * * , XiXi + 1, * ' ' > Xn] 
i = l 

+ ( - l ) n [ X 1 , - " , X n - l ] . 

The cohomology of the space X with coefficients in an abelian group A is 
therefore equal to the cohomology of the complex Hom(B(IIi), A), consist­
ing of n-dimensional cochain groups Cn=Hom(Bn, A). Since the group B„ is 
the free abelian group with generators the set ILx- • -xIL, the group Cn of 
n-cochains is the group of all functions ƒ :IIiX • • • xIL—»A, with coboundary 
of given by the general formula (8f)c = ƒ dc ; that is, 

(S / ) [Xi , - • • , X n ] = /a[Xi , • ' • , X n ] . 

For n = l and n=2 this becomes 

(ôh)[x,y] = h(y)-h(xy) + h(x), 

(Ô/)[x, y, z] =/[y, z]-/[xy, z]+/[x, yz]-/[y, z]. 

In particular, oh=0 states that h is a (crossed) homomorphism IIi->A, and 
ô/=0 for n=2 that ƒ is a factor set (both for the group IL acting trivially on 
the group A of coefficients). Thereby the original algebraic identities (3.1), 
(3.2), and (3.7) for functions on G are interpreted geometrically in all 
dimensions, when G is taken to be the fundamental group IL of a suitable 
space. 

Consider more generally the case when IL acts (nontrivially) on the 
abelian group A ; this amounts exactly to asserting that A is a (left) module 
over the integral group ring Z(IL). This case also has a geometric interpreta­
tion, if we replace the space X by its universal covering space X. The 
fundamental group IL of X then becomes the group of covering transforma­
tions of X, so that IIi acts on each chain group S„(X), making S„ a 
Z(IL)-module. The chain complex B(IL) used above is now replaced by a 
corresponding complex for X of the form 

(3.11) E ( I L ) : E o ^ ^ E i ^ - E 2 < < En-y^—En< , 

where each En is the free Z(IL)-module generated by the elements 
[xi, • • • , Xn] and d is the IL -module homomorphism with 

d[Xl, • • • , X n ] = Xl[X2, • * * , Xn] + X ( - l ) l [ X l , • • • , XiXi + l, • • • , Xn] 
(3,12) +(-ir i/(xi,---,xn). 
Now spaces (like X) with group actions (like covering transformations by 
IIi) have an "equivariant" cohomology. Following Eilenberg's earlier study 
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of this equivariant cohomology we now construct the complex Cn of 
equivariant cochains on E (IL) with coefficients in the Z(IL)-module A. 
Here Cn=Homn i(En , A) is the additive group of module maps En-^A, and 
so again consists of all functions f:IliX- • • xIL—»A, with coboundary in­
volving the III action as 

( 8 / ) ( X l , • • • , Xn+l) = X l / ( X 2 , " • • , Xn+l) 

(3.13) + Z (-l) ' / (xi , • ••• ,XiXi+i, • • • ,x„+i) 
i = l 

+ ( - i r + i / ( x i , - - , x n ) . 

The n-dimensional cohomology Hn(IIi, A) is now defined in all cases as the 
cohomology of this complex 

(3.14) H n ( n 1 , A ) = { a l l / : n ï ^ A with8/ = 0}/{/ = Ô g , g : n r 1 - ^ A } . 

The construction applies for any group IIi = G, and clearly includes the 
previously considered cases of crossed homomorphisms, factor sets, and 
Teichmüller cocycles. Thus the cohomology groups in all dimensions have 
geometric meanings, as summarized by the theorem whose proof we have 
just now indicated: 

THEOREM 1. If an arcwise connected space X has vanishing homotopy 
groups IL=- • • = n n = 0 , its n-dimensional cohomology (and homology) de­
pends only on the fundamental group IL = IL(X) and is given, for each 
abelian group A, by the group-cohomology: 

H n (X ,A) = H n(IL(X),A). 

THEOREM 2. Let the group G act as a group of homeomorphisms on a 
space Y with vanishing homotopy groups IL = * • = n n = 0 in such a way that 
no element x ^ l in G has a fixed point in Y. Then for each Z(G)-module A 
the nth equivariant cohomology group H" of Y is given by the group 
cohomology as 

H:(Y,A)=H"(G,A). 

The cohomology of groups is thus intrinsically present in the topological 
situation; hence it is not surprising that it was independently discovered in 
several ways: by Eilenberg-Mac Lane in 1943 ([22] and [24]), by Eckmann, 
with a slightly different complex ([16], 1945), by Hopf ([47], 1944) and by 
Freudenthal ([33a], 1946). Actually the last two authors described the 
homology of a group IL, which can be defined as the homology 
H„(B(ui), A) of the complex B(IIi) described above. 

As befits its multiple origin, there have been multiple developments of 
group cohomology: to Postnikov systems, to class field theory, to homologi-
cal algebra and to higher dimensional interpretations. We report briefly on 
each. 

Topologically, one immediately wishes to calculate all the homology and 
cohomology groups of a space X from all its homotopy groups IL, IL, 
But this can't be done, because the homotopy groups alone do not suffice to 
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determine the space or even its homotopy type (which would be enough). To 
see why, it is easiest to again replace the space X by its universal covering 
space X, noting for all higher dimensions n>\ the natural isomorphism 
n„(X)=nn(X): This indicates also why each I1„(X) is a IL-module. Now we 
will construct two different such covering spaces Y and W with the same 
covering group IL. Take IL to be the free abelian group F on three 
generators x, y, and z, realized as a group of translations of Euclidean 
three-space R3 with x, y, and z the unit translations along the three axes of 
R3. Form a space Y by attaching a 2-sphere to each integral lattice point of 
R3, and form W by removing from R3 the interior of each cube of the 
rectangular lattice (in other words, W is the set of all the points of R3 with at 
least one integer coordinate). The free group F acts as a group of translations 
on both Y and W, both IL(Y) and IL(W) are zero, and both spaces have 
the same second homotopy group IL—indeed, IL(Y)=IL(W) is the free 
F-module on one generator (represented in Y as the sphere attached at the 
origin, and in W as the boundary of a lattice cube at the origin). Neverthe­
less they have different homology. The difference may be analyzed by 
forming in both spaces the boundary faces of a singular 3-simplex (or, 
equivalently, a singular cube) with leading edges x, y, and z along the orbits 
of the three generators of the covering group F. This "sphere" may be 
pictured as a cube thus: 

</-—i. 

j — 
v* 

X 

In W, the sphere represents a nonzero element of IL (the interior has been 
removed) while in Y the corresponding element is zero. This difference can 
be expressed in terms of a certain invariant k of the space X (covered by Y 
or W); it is a 3-dimensional cohomology class k e H3(IL(X), IL(X)). The 
cube pictured above records the fact that k=0 for the space Y and that k^O 
for W. For any arcwise connected space X with vanishing homotopy beyond 
IL, the homology is determined completely by the group IL, the IL-module 
IL and this invariant k (see [26]). This list of three invariants IL, IL, and k 
is the first example of a Postnikov system—with more higher homotopy 
groups, there are more such invariants. Put differently, the cohomology of 
groups provides the setting for describing invariants, like k, sufficient to 
determine the homotopy type of spaces (more exactly, of spaces representa-
ble as CW-complexes). 

As already indicated, the cohomology of groups was motivated in part by 
the needs of class-field theory; I vividly recall a conference at Indiana 
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University about 1948 at which Emil Artin pointed out to me some of the 
prospects. It remained for Artin's student Tate, exploiting also Hochschild's 
earlier treatment of local class field theory, to show decisively [93] how the 
higher cohomology groups could be used effectively in class field theory. 
This is the starting point of Galois cohomology (see for example Serre [88]). 

We have described the cohomology of a group G in terms of a standard 
complex; specifically, Hn(G, A) is the cohomology of HomG(B„(G), A), 
where Bn(G) is the specific complex of free G-modules given in (3.10). 
Eckmann's alternative description of the cohomology had already indicated 
that one might use different complexes to get the same cohomology. It is 
possible to describe exactly the character of these differing complexes. In the 
complex (3.10), B0(G)=Z(G) and the homology of the complex B(G) is 
zero except in dimension 0, where it is the abelian group Z (regarded as a 
G-module with trivial action x • n=n for all xeG). Now "augment" the 
complex B(G) of (3.10) by adding at the bottom the G-module map 
e :Bo(G)-»Z which sends each x in G to 1. This augmented complex may 
then be compared to any other complex 

(3.15) Z«-Po«-Pi< 

starting with the G-module Z, consisting of projective G-modules Pn and 
having zero homology. The comparison shows that HomG(B, A) and 
HomG(P, A) have the same cohomology, thus showing that the cohomology 
of G with coefficients A may be calculated from any such P—called a 
projective resolution of Z. This use of projective resolutions, combined with 
the similar use in the Eilenberg-Mac Lane calculation of the groups Ext, was 
the first step toward homological algebra (Cartan-Eilenberg [10], Mac Lane 
[71]). 

Our starting point was the interpretation of the cohomology groups 
^(G, A) as a group of crossed homomorphisms and H2(G, A) as a group of 
group extensions. It was natural to ask for corresponding interpretations in 
higher dimensions. For H3, Eilenberg-Mac Lane found such an interpreta­
tion, building on ideas of Baer [5] and Teichmüller [96]. Consider an 
extension of a group K, no longer abelian, by G; that is, a short exact 
sequence of groups (K additive still) 

(3.16) 0 - * K - * E - * G - > l . 

Since K is a normal subgroup of E, conjugation of K by an element of E 
gives a homomorphism E-»Aut K to the group of automorphisms of K, and 
thus induces on G a homomorphism i// : G-»Aut K/ln K, where In K de­
notes the group of inner automorphisms of K. In case K is abelian, this is 
just the "action" of G on K=A which we have already exploited in 
(3.1)-(3.3). When K is not abelian, the first step in studying group exten­
sions then becomes: Given K, G, and i// : G-»Aut K/In K, does there exist, 
as in (3.16), an extension E realizing i//? Baer in 1934 showed that this was 
not always possible. Eilenberg-Mac Lane, starting also with the observation 
that topologists could measure the impossibility of certain constructions by 
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finding an "obstruction" cocycle, proceeded to find such an obstruction to 
the realization of if/. The basic description of this obstruction is straightfor­
ward: In each automorphism class i/>(x), pick an automorphism <p(x). Since i// 
is a homomorphism, the product <p(x)<p(y) is cp(xy) up to an inner au­
tomorphism, which we can write as the inner automorphism jut(/(x, y)) 
induced by some element /(x, y)eK. Thus, in AutK, 

<p(*)<p(y) = v>(f(x, y))<p(*y). 

The associative law now shows that /xf is essentially a "factor set". This 
implies that f(x, y) itself is a factor set only up to an extra term k lying in the 
kernel of JUL, SO that, modifying equation (3.2) by this extra term, 

(3.17) <p(x)f(y, z)+/(x, yz) = k(x, y, z)+/(xy, z)+/(x, y). 

Now jut : K—»Aut K sends each b e K to conjugation by b, so the kernel of JUL 
is the center C of K. This C is abelian, and G acts on C via <p. Thus k is a 
function k:GxGxG-+C. Straightforward calculation shows that k is a 
three-dimensional cocycle, and that its cohomology class in H3(G, C) is 
independent of the choices made in its construction. This cohomology class 
is exactly the obstruction to the given problem of realizing \p by a group 
extension, in the sense that there is such a realization if and only if this class 
is 0. Moreover, any three-dimensional cohomology class in H3(G, C) can be 
realized in this way as the obstruction to some extension problem. These 
results, presented in Eilenberg-Mac Lane [29] (or in Mac Lane [71, Chapter 
IV]) provide a satisfactory interpretation for H3. They are analogous to the 
Teichmüller constructions for G-normal algebras, as discussed above. 
Moreover, this interpretation of H3 for the cohomology of groups has been 
a model for similar interpretations of three-dimensional cohomologies of 
other sorts of algebraic systems—for Lie algebras (Hochschild [42], [43] and 
Mori [83]), for rings (Mac Lane [69] and Shukla [89]), and for cohomologies 
of other systems (Barr [6], Gerstenhaber [38]). All these cases do indicate 
that the topological idea of an obstruction cocycle has extensive algebraic 
meaning and use. 

For the higher cohomology groups Hn(G, A) with n^4 attempts to get 
similar interpretations have not been generally successful. A more systema­
tic new attack by J. Duskin, using his new concept of a torsor, [13], [14] 
does, however, offer hopeful prospects. 

4. The bar construction. The cohomology groups Hn(G, A) of a group 
G, as we have just seen, provide a way of calculating the cohomology groups 
of an arcwise connected space X whose only nonzero homotopy group is the 
fundamental group IIi(X)=G. Corresponding questions arise for other 
spaces X with a single nonzero homotopy group in some higher dimension 
n. Indeed Hurewicz, shortly after inventing the higher homotopy groups, 
had proved that two arcwise connected spaces X and X' with the same nth 
homotopy group nn(X)=nn(X') and with all other homotopy groups zero 
were necessarily of the same homotopy type, and hence must have the same 
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homology and cohomology groups in all dimensions. This qualitative result 
again presented the same sort of algebraic problem: To find algebraic 
formulas which give the homology of such a space in each dimension as a 
function of the abelian group II—and of the dimension n in which II 
appears. 

In principle, this functorial dependence problem could be solved by 
analysis of the singular complex S(X) of the space X in question. Singular 
simplices of dimension less than n could all be deformed homotopically to 
the degenerate simplices at the chosen base point. In dimension n, a singular 
simplex T : A„-»X would then map all the boundary of A„ to the base point, 
and so would be essentially a map of the n -sphere S„ to X; each such T thus 
represents an element y in the nth homotopy group II. In higher dimensions 
q>n each singular simplex T:Aq->X would determine on each n-
dimensional face of Aq an element y e II, and the whole simplex T could 
thus be replaced (in a minimal subcomplex) by the pattern of elements of II 
represented by T on the various n-dimensional faces of Aq. Each such 
pattern is a Il-valued function on the n-dimensional faces; when we regard 
Aq as a simplicial set, the pattern is exactly an n-dimensional cocycle (an 
element of Zn(Aq, II)). In this way it was possible to describe in terms of II 
and n a chain complex with the appropriate boundary d, 

(4.1) K(U, n) : • • • < Kq(U, n) <-^-Kq+1(II, n) < , 

with dd=0 as usual, in which the group Kq of q-dimensional chains is exactly 
the free abelian group generated by the set Zn(Aq, II). This complex K(II, n) 
is thus a wholly algebraic object depending only on II and on n and having 
the desired homology. This complex is also very cumbersome. The problem 
lay in simplifying this complex to the point where its homology and 
cohomology groups could be explicitly determined. 

The simplification proved to be possible thanks to long and elaborate 
calculations of many special cases. (As customary, the extent of these 
calculations was largely covered up in the resulting papers by Eilenberg-Mac 
Lane [28], [29], and [30].) These calculations ultimately revealed two 
leading principles: 

(a) K(II, n+1) should be expressed in terms of K(II, n); 
(b) K(II, n) has a multiplicative structure. 

The first allowed us to start with K(II, 0), which is just the integral group 
ring Z(II), and with K(II, 1), which is of course exactly the complex B(II) 
already discussed for this case—that of the cohomology of an (abelian) 
group II, realized as the fundamental group of a space. 

A multiplicative structure on a complex K is a rule under which a p-chain 
c and a q-chain c' have as product a p+q chain cc', so as to yield a bilinear 
(and associative) map 

(4.2) Kp(n, n)(g)Kq(II, n)-*Kp+q(Il, n) 

which satisfies the usual (Leibniz) formula for the boundary of a product 

(4.3) d(ccO = (dc)c'+(-i)pc(dc'). 
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Generally, a chain complex with such a product is called a differential graded 
ring. In the present case, the product arose first in the simplified expression 
of K(II, 2) in terms of K(U, 1); specifically, the boundary formula for 
K(II,2) required in B(II)=K(n, 1) a product given by "shuffles." For 
elements Xi, • • • , xp, yi, • • • , yq of II this product in 13(11) was explicitly 

(4.4) [xi, •• • ,xp][yi,- • • ,yq] = £ ± [ z i , - • • , z p + q ] , 

where each list Zi, • • • , zp+q on the right is obtained by "shuffling" the letters 
Xi, • • • , xp (preserving their order) through yi, • • • , yq, where the sum is 
taken over all such shuffles, and where the sign of each term is the sign of 
the shuffle, regarded as a permutation of p+q. From this purely algebraic 
and formal description of the product it is possible to prove the associativity 
of the product as well as the boundary formula (4.3). However, it turned out 
that this product formula had a geometric—or at least a simplicial—origin, 
based on the fact that the cell [xi, • • • , xp] really stands for a pattern of 
elements Xi of II on the edges of a p-simplex, and hence a 1-dimensional 
cocycle in ZX(AP9 II). Now the cartesian product ApxAq of two simplices is a 
prism which can be triangulated into simplices in a standard way—think of a 
square divided into two triangles by a diagonal, or of a triangular prism 
A2xAi divided into three tetrahedra. The general picture is this: Let the 
simplex Ap have vertices (a0, • • • , ap) while Aq has vertices (b0, • • • , bq). 
Then ApxAq, a prism with vertices vk=(ah b,), is triangulated by those p+q 
simplices (u0, • • • , vp+q) which are lists from among the given vertices and 
taken in some increasing order, so that a vertex Vk=(ai-i, bj-i) in such a list 
is to be followed either by (ai? bj-i) or by (ai-i, bj)—in the first case moving 
along the edge labelled xt from at-i to ah in the second case moving along 
the edge y. Hence each such list of p+q vertices is given by successive 
choices of x's (in order) or y's (in order); that is, exactly by a shuffle of the 
x's through the y's. It is this simplicial structure which is the real source of 
the "shuffle" product structure in the complexes K(II, n). The algebraic 
formula has a geometric origin. (See Mac Lane [71, VIII, 8].) 

This observation also emphasizes the presence of a simplicial structure in 
the complex K(II, n). For each generator (or pattern) c of Kq (II, n) is a 
cocycle ceZ n (A q , II), while the boundary of c is defined as an alternating 
sum of faces 

(4.5) dc = F o C - F t c * - • + (-l)qFqc 

where Ftc designates the cocycle c restricted to the tth face of Aq. There are 
corresponding "degeneracy" operations; the simplicial map D1 :Aq+i—»Aq 

collapsing the successive vertices bj and bJ+i of Aq+i induces a map 
D J :Z

n(Aq ,n)->Zn(Aq + i , II). Together, these operations Ft and D, satisfy 
certain identities which make the complex K(II, n) into what we then called 
an F-D complex—now called a simplicial abelian group. The extensive 
manipulation of these face and degeneracy operators needed for the calcula­
tions of K(II, n) were one of the sources which led at that time to the 
Eilenberg-Zilber definition [31] of "complete semisimplicial complexes." 
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These complexes (now called simplicial sets, Mac Lane [71]) are exactly the 
minimal structures in which face and degeneracy operations can appear. 
They were used initially [27], [31] to prove the Eilenberg-Zilber theorem. 
This is the theorem which, applied to the singular complex of the product of 
two spaces X and Y, yields a chain equivalence of singular complexes 

(4.6) S(XxY)z±S(X)®S(Y). 

With the Kiinneth theorem on the homology of a tensor product of 
complexes (Kan [48], May [81], Lamotke [56]) as well as a systematic 
Moreover, in this Eilenberg-Zilber theorem, the map from right to left in 
(4.6) is essentially based on shuffles, because singular simplices T:AP-»X 
and U:Aq-»Y yield TxU:ApxAq-»XxY which by subdivision (shuffles) 
produces a sum of (p+q)-dimensional singular simplices of XxY. 

From this notion of a simplicial set, D. M. Kan developed the possibility 
of a wholly algebraic formulation of homotopy theory in terms of his Kan 
complexes (Kan [48], May [81], Lamotke [56]) as well as a systematic 
view of topology, as in Gabriel-Zisman [36]). This is another case in which 
geometrical ideas led to algebraic developments—in this case turning back 
to geometry again in the various uses of simplicial sets in recent differential 
topology. 

After this exploration of the geometric reasons for the presence of a 
product structure in the complex K(II, n) we return to the original problem 
of constructing from K(Tl, n) din equivalent of X(II, n+1). This will be done 
in terms of the bar construction B, which applies to K(I1, n) or, for that 
matter, to any differential graded ring U with an augmentation e : U-*Z. 
Here an augmentation means a morphism of differential graded rings, and 
the ring Z of integers is regarded as a differential graded ring with zero 
differential and all elements taken to have degree 0. The bar construction on 
U is now the additive group 

(4.7) B(U)= £ Up, UP = U®-®U (p-factors) 

with U° = Z, with elements written with "bars" in place of ® as 

(4.8) ui®---®Up = [ui|---|up], meU, 

and graded by degrees defined from the degrees in U by 

(4.9) deg[ui| • • • |up] = p + degui + - • -+degup. 

This graded group is made into a chain complex (i.e., a "differential graded 
group") by introducing a boundary operator d which is the sum of two 
terms, d=d'+d". The first summand d' is almost exactly the boundary 
operator of B(IIi), 

d[ui\ • • • |up]= e(ui)[u2| • • • |up]+ Z (-l)Ci[ui| • • • \uiUi+i\ • • • |up] 
(4.10) i=1 

+ (-l)ep[ui| • • • |up-i]e(up), 
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with signs determined by ex = deg[ui| • • • |ut]. The second summand depends 
on the boundary already present in U, 

(4.11) a"[ui|. . . |uP] = É (-i)Mwil • • • |wi_i|aut| • • • up]. 
i = l 

It is immediate to verify that dd=0. The essential result is 

THEOREM 1 (EILENBERG-MAC LANE [28]). For any abelian group U there is 
a chain equivalence 

(4.12) g : B ( K ( n , n ) ) - > K ( I I , n + l) . 

The original proof involved an explicit formula for g, a normalization of 
the bar construction B and a description of the simplicial set K(II, n+1) 
directly in terms of K(U, n) by a straightforward but elaborate simplicial 
construction W (one that has subsequently been used by John Moore and 
others): K(II, n + l ) = W(K(U9 n)). Since chain equivalent complexes have 
the same homology and cohomology, this result does replace a computation 
of the homology for K(U, n+1) by that for a substantially simpler complex 
B(K(ÏI,n)). 

For really effective calculations one wishes to iterate this reduction. This 
involves applying a bar construction to a bar construction, and hence 
requires the use of a suitable product in B(U). To do this it is essential to 
observe that the product in each K(H, n) is commutative (or should one say 
"skew commutative"?) in the sense that always 

cc' = (-l) (degc) (degcVc, c, c ' eKf l l , n). 

For example, the group ring K(II, 0)=Z(I1) is commutative because the 
group n is assumed to be abelian, while the shuffle product (4.4) used in 
describing K(H, 1)=B(U) is commutative in virtue of elementary properties 
of permutations. More generally, if the differential graded ring U is com­
mutative, the bar construction B(U) becomes a differential graded ring 
under the same type of shuffle product, 

[ui| • • • |up][ih| • • • k ] = Z ±[wi| • • • |wp+q], 

where the sum on the right is taken over all shuffles wk of the u's through 
the u's and the exponent of the sign (—1)~ is the sum of all products 
(deg Ui)(deg v,) for those Vj which have been shuffled in front of Ui. With this 
shuffle product, one proves that the chain equivalence g of the main 
theorem preserves products. Hence the reduction to the bar construction 
can be iterated to prove the 

COROLLARY. For any abelian group U there is a chain equivalence 
B n(Z(II))-»K(n,n) . 

By these means the original and elaborate complex K(H, n) is reduced to 
a much simpler complex Bn(Z(U)) on which effective calculation of homol­
ogy and cohomology of K(H, n) is possible. This of course gives the 
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homology of the corresponding spaces of type K(II, N)—the arcwise con­
nected spaces X with nn(X)=Il and all other homotopy groups trivial. They 
are now commonly called "Eilenberg-Mac Lane spaces" and used as "build­
ing blocks" in Postnikov systems and elsewhere in topology. 

We record the results of a few calculations by these means, writing 
Hn(n,n)for Hn(K(n,n)): 

Ho(II, n) = Z, Hq(II, n) = 0, 0 < q < n ; 

Hn(n,n) = n, 
which results from the Hurewicz isomorphism: The first nonvanishing 
homotopy group (made abelian) is isomorphic to the corresponding homol­
ogy group; 

Hn+1(ll,n) = 0, 

H4(n, 2) = r(n), Hn+2(n, n) = n/2n, n > 2. 
Here r(Il), a group discovered by J. H. C. Whitehead [101], is the group 
generated by symbols 7(x), one for each xe l l , and subject to the relations 
y(—x)=y(x) and 

7(x + y + z ) -7 (x + y ) - 7 ( x + z ) - 7 ( y + z) + 7(x) + 7(y) + 7(z) = 0 

for all x, y, and z. These relations state that 7 is a quadratic function (or a 
quadratic form). They have the consequence that T, as a function of II, is 
not additive but quadratic; for the direct sum of two groups IL and IL, 
r(IL+IL) is not r(IL)+r(IL); instead there is a "deviation from additivity" 
given by the formula 

r ( iL+IL)=r ( iL )+ r ( iL )+ IL <8>IL. 

In other words, the geometric study of the spaces K(II, n) leads explicitly to 
the construction of functors like H4(II, 2) which are quadratic (and similarly 
to functors of higher degrees). 

The list continues as 

H6(n,3)=2n+nAn, Hn+3(n, n) = 2n, n>3, 
where 2II denotes the subgroup of all elements of order 2 in II and II A II is 
the exterior square of II, generated by symbols x A y, for x, y e II, which are 
bilinear and alternating (XAX = 0). This functor Ü A I I is another quadratic 
functor; there is a similar (and more complex) formula for H5(II, 2). Finally, 
for n>5, 

H8(n,4) = r(n)+n/3ii, Hn+4(n, n) = n/2n+n/3n. 

But let us return from these results of calculation to the two principal 
observations which made these calculations possible: The construction of 
K(II, n+1) out of K(II, n) and the presence of a (commutative) product in 
K(II, n). In the Eilenberg-Mac Lane calculations these were first discovered 
empirically, as means to make the calculations go. They are actually deeply 
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rooted in the geometry, and so really exhibit our main theme of the 
influence of geometry upon algebra. For let X be an arcwise connected 
space of type K(II, n+1), choose a base point x0 in X and construct the path 
space E(X) whose points are all the paths starting at x0 (and topologize 
E(X) by the compact-open topology). Then the space E(X) is contractible, 
the function p :E(X)->X sending each path to its endpoint in X is a (Serre) 
fibration and the fiber p~\x0) over the base point is exactly the space H(X) 
of all closed loops (at xo) in X. A standard argument in homotopy theory 
shows that each homotopy group ïlk(n(X)) is isomorphic to nk+i(X), hence 
in our case Cl(X) has only one homotopy group, the group II in dimension n. 
In other words, the loop space on a space K(n, n+1) gives a space K(n, n). 
Put differently, the bar construction is a type of "inverse" construction to 
the loop space. The parallel between geometry and algebra should read 

loop space O(X) K(II, n) 
I 4 

path space E(X) E(K(II, n)) 

I I 
K(n, n +1) = X B(K(n, n)) ^ K(II, n +1). 

The complex on the bottom at the right is the bar construction, but hitherto 
the algebraic treatment missed the middle complex E on the right. On the 
left, the loop-space fl(X) has a multiplication (the evident product of two 
loops) and is an H-space under this multiplication; moreover this H-space 
fl(X) acts on the path space E(X). Hence on the right E should be 
contractible and the differential graded ring K(U, n) should act on E. In the 
case n = l we used exactly such an E in forming the resolution (3.11). In 
general, there is always a suitable chain complex E to fit these properties in 
this diagram. Indeed, for each augmented differential graded ring we may 
form E{U) as the sum £ U®UP, with suitable grading and differential, 
making U act on E(U) via the first factor U in U<8>UP. (The exact formulas 
appear in Mac Lane [71], where E is called the bar construction and B=B 
the reduced bar construction.) Thus the parallel between geometry and 
algebra is complete; moreover, the product (of loops) present in fl(X) does 
exactly match the shuffle product found algebraically in K(II, n)—as demon­
strated, after the fact, by Mac Lane in [68]. 

This parallel between geometry and algebra can also be used to facilitate 
the calculations. It was first clearly observed by H. Cartan, who continued in 
his 1954/55 seminar [9] to show that the bar construction (and the acyclic 
bar construction E) could be supplemented by many other types of small but 
similarly acyclic constructions. He then used these constructions to obtain a 
complete calculation of Hq(II, n,Zp), with p a prime, with the results 
expressed in terms of suitable homology operations. He also obtained a 
description of Hq(Il, n ; Z ) ; much more recently, Ross Hamsher [41] and 
Gerald J. Decker [12] have shown how this description can be further 
developed to yield a whole family of invariant descriptions of homology 
groups Hq(II, n) like the few listed in the formulas above. 
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The bar constructions B(G) for a group and B(U) for a differential 
graded ring are algebraic entities, inspired by topological considerations. In 
particular, B(G) is, by the parallel above, exactly the analog of the classify­
ing space of a group G This analogy led many authors to replace the 
algebraic bar construction B(G) by a suitably topological construction of a 
space (Rothenberg-Steenrod [87], Steenrod [91]). The most definitive for­
mulation is that of Milgram [82]. Since the formulas for B(G) do not use the 
inverse, but just the multiplication and unit in G, Milgram replaces the 
group G by a topological monoid; more exactly, by a monoid in the 
category of compactly generated spaces; from this G he constructs a space 
B(G). For each cell [xi, • • •, xp] in the algebraic bar construction he takes a 
copy of the standard p-simplex, forms the sum of all these products, 

B(G) = Z[xi,---,Xp]xAp/~, 

and then identifies suitable faces and degeneracies. Indeed, we already have 
noted that the faces and degeneracies act on the cells [xi? • • • , xp]; they act in 
the opposite or dual sense on the simplices Ap's. As a result the identifica­
tions required can be expressed conceptually by regarding both 

P *"* P x * ' * x Q an<3 P •-* Ap 

P 

as functors, of opposite variance, on the basic simplicial category A. The 
geometric bar construction is thus expressed simply as a coend in the 
categorical sense (Categories work [16], Chapter IX; the coend, indicated by 
the integral sign, serves to make exactly the desired identifications). 

B(G)= [PGpxAp. 

At this central point, algebra and topology are thoroughly mixed! (For 
details, see Mac Lane [75].) 

5. Coherence and canonical maps. Stimulated by considerations in to­
pology, Norman Steenrod raised the question: When is there a canonical 
map between two specified formal combinations of modules? He was 
considering (the category of) all modules over a commutative ring, and the 
combinations of such modules formed by applying the functors Horn and ®. 
In order to describe a suitable meaning for "canonical maps" between such 
combinations we must describe these circumstances in more detail. 

First consider only a tensor product ®. A (symmetric) monoidal category 
M is one equipped with a bifunctor ®:MxM-*M which is associative and 
commutative up to isomorphism, in the sense that there are isomorphisms 

a:A<8>(B®C)^(A<8>B)®C, c : A<8>B-*B(g)A 

which are natural (in the objects A, B, C of M) and which satisfy two 
additional conditions, expressed by the commutativity of the (pentagonal 
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and hexagonal) diagrams 

A ®[B <8>(C<8>D)]—a-+ (A <8»B) <8>(C<8>D) 
1(8a [(A®B)®C]®D, 

A®[(B®C)®D]-^->[A®(B®C)]®D 

A®(B®C)- i L -»(A®B)®C- 1 -»C®(A®B) 
l®c a 

A ® ( C ® B ) - ^ ( A ® C ) ® B - ^ 2 ^ ( C ® A ) ® B ; 

the first of these asserts that the two ways of reassociating an iterated 
product of four factors are equal, while the second states that the two 
possible ways of "permuting" a factor C past both A and B are equal. In 
addition, a symmetric monoidal category is equipped with an object I and 
an isomorphism b :A®I-+A, natural in A, which renders commutative the 
(triangular) diagram 

A ® ( B ® I ) - - ^ ( A ® B ) ® I - ^ A ® B 
— • 

l®b 

Clearly the modules (or the graded modules, or the differential graded 
modules) over a commutative ring R, with I the module R and with a, b, 
and c the usual canonical maps, do then form a monoidal category. A 
"canonical" map in such a category may now be described (more formally 
below) as any map formed by tensor products and compositions of these 
three maps a, b, and c. The three diagrammatic conditions on these maps 
are a way of insuring that we have used the "right" maps (for example, for 
modules again, not the "wrong" isomorphism â :A®(B®C)~KA®B)®C 
given as 

x®(y®z)>-> -(x®y)®y, xeA, yeB, zeC; 

this map evidently does not make the pentagonal diagram above commuta­
tive. Put differently, these conditions on a, b, and c allow us to handle with 
precision the familiar identifications: The usual identification of A®(B®C) 
with the logically distinct triple product (A®B)®C can be done via the 
given isomorphism a. The pentagonal diagram insures that this provides 
exactly one isomorphism serving to identify two quadruple tensor products; 
the first coherence theorems (independently found by Mac Lane [73] and 
Epstein [33]) assert the same for n-fold products, for all n. Moreover, this 
applies to many other instances of monoidal categories, such as the category 
of sets with ® taken to be cartesian product. Here again it explains the 
process of identifying two formally different iterated n-fold cartesian pro­
ducts. 

Now we supplement the tensor product with a functor Horn, defining a 
closed category to be a monoidal category M with an added bifunctor 
Horn :MopxM—»M (the exponent "op" indicates that this functor Horn is 
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contravariant in its first argument) such that each (covariant) functor 
Hom(A, -):M->M is right adjoint to the functor "tensor product by A", 
- ® A : M-+M. This statement means, as usual, that there is an isomorphism 

(5.1) TT :hom(B ® A, C) = hom(B, Hom(A, C)) 

natural in B and C, where the "outside" horn is a set; specifically, 
hom(B, D) the set of all morphisms from B to D in the category M. This 
formulation emphasizes the sense in which a closed category is one with an 
internal hom-functor Horn, with values in M. 

For our purposes of describing canonical maps it is necessary to recall that 
an adjunction isomorphism, such as TT above, can be completely described 
by its unit and its counit. To get the unit we set C=B®A in the formula 
above, take the identity B®A->B®A in the left hand hom-set and its 
image under the adjunction ismorphism, giving some d :B—>Hom(A, B®A) 
(for modules, d is the map which sends yeB to the homomorphism 
xt~»y®x, all xeA). Similarly, to get the counit, set B=Hom(A, C), take the 
identity of Hom(A, C) and its image on the left in the adjunction, which is a 
map e:Hom(A, C)®A-*C called "evaluation." For the category of mod­
ules, it is just the familiar map /®x»-»;f(x) which "evaluates" a morphism 
ƒ : A—>C in Hom(A, C) on an element xeA. 

A closed category may thus be described as a monoidal category M 
together with an added bifunctor Hom:MopxM-»M and two families of 
maps 

d:B-^Hom(A,B®A), e :Hom(A, C)®A-»C, 

natural in B and in C, respectively, which render commutative the diagrams 

Hom(A, C) - 3 - * Hom(A, Hom(A, C)® A) B ® A j ^ Hom(A, B ® A)® A 
j ^ ^ ^ Hom(l.e) 

Hom(A,C) B(giA 

and, for every arrow f:A-*D, the diagrams 

B : • Hom(A, B^A) Hom(D, C)®A-^-+ Hom(D, C)®D 

Homif, 1)®1 

Hom(D,B®D) Homtf. 1 ) 
Hom(A,B®D),Hom(A,C)®A-

The first two diagrams are the "triangular identities" for unit d and counit 
e ; they always suffice for the descriptions of the adjunction in terms of unit 
and counit—see Mac Lane, Categories work [76]. The other two diagrams 
state that the unit d is "diagonally natural" in A and that e is too. The 
modules over a commutative ring do form, in the familiar way, a closed 
category, as do sets, with ® taken to be cartesian product. 

Now we can explicate Steenrod's question about canonical maps between 
formal combinations of modules. The formal combinations in question will 
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be called words. Assume given an infinite stock of letters A, B, C, • * • and a 
symbol I, not here regarded as a "letter." Then I and each of the letters is 
called a word, covariant in that letter. If W and W are two words in disjoint 
(finite) sets L and L' of letters then both W(g>W and Hom( W, W) are words 
in the set L+L' of letters. Each letter A in W has the opposite variance (±) 
when regarded as a letter in Hom(W, W), while the other letters retain their 
variance. The words so constructed are all words. Clearly each word W i n n 
distinct letters determines for each particular closed category M a functor 
WM of n variables in M, with values in M, and with the variance of the 
functor in each of its variables determined by the variance of the corre­
sponding letter in the word W. (All this formality about letters is necessary to 
avoid misstatements, as will presently appear.) 

The canonical maps ƒ are intended to be those generated by the maps a, 
b, c, d, and e defining the structure of the closed category M, but regarded 
just formally, as maps ƒ : W—>W' between words. However it is convenient 
to so arrange matters that the domain and codomain words W and W have 
no letters in common. For example, we will rewrite the map c : A(8)B-»B(g)A 
as C:A<8)B^>B*<8)A*, to involve four different letters A, B, A*, B* to­
gether with an involution A++A*, B«*B* on this set of four letters. More 
generally, we consider any instance of c formed by taking any two words V 
and W, copying them as V* and W* in different (but corresponding) letters, 
and using Cv,w : V(8>W-> W*®V* as a canonical "map" in the letters in the 
disjoint union V+ W+ V*+ W* of four sets of letters. Moreover, this process 
determines an involution, called the graph of cv,w, on the total set of letters, 
written graph(cv,w): V®W--»W*®V*. One defines similarly the instances 
of a, b, c, d, and e and their graphs, noting however that in the graph of 
e :Hom(V, W)®V*—»W* two letters corresponding under the involution 
may appear on the same side of the arrow—and similarly for d. Canonical 
maps are now defined by recursion, requiring that all instances of a, b, c, d, 
and e are canonical, that if ƒ : V-»W and g-.V'-^W' are canonical, so are 
/<8>g:V(g>V'-»W<g>W and Hom(/, g):Hom(V', W)-»Hom(V, W') and that 
the composite of two canonical maps is canonical. Thus each canonical map 
ƒ : V—>W appears as a word built up by applying ®, Horn, and composition 
to letters standing for instances of a, b, c, d, and e ; it is easily possible to 
regard the canonical maps as arrows in a suitably constructed category with 
objects the words V and W, and this is indeed so done in the original 
treatment by Kelly-Mac Lane [51]. 

Each canonical f:W->W', by this construction, has a graph, which is an 
involution on the set of letters involved; specifically, if W is a word in letters 
L and W a word in the (necessarily disjoint) set of letters L', then graph(f) 
is an involution on the set L+L'. In actually writing down diagrams, this 
graph is customarily indicated by the labels of the variables, corresponding 
letters being labelled alike. Formally, we can regard the graph as an arrow 
W-^W' in the category of graphs, with objects all words and arrows all 
(possible) graphs; it turns out that this category of graphs is itself a closed 
category. 
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Now in e :Hom(A, B)<8>A—»B, and likewise in the maps d, a, etc., one 
may note that corresponding letters have the same variance when they occur 
on opposite sides of the arrow, and otherwise have opposite variance. This 
variance rule may be readily captured in the following definition. Given 
words W and W in disjoint sets L and L' of letters, a graph <p : W-+W' is an 
involution of the disjoint sum L+L' such that corresponding letters would 
have opposite variance in the (additional) word Hom(W, W). This involu­
tion of the letters is needed in order to describe the naturality of our 
intended transformations, and the notion of graph is due to Eilenberg and 
Kelly in the pioneering study [19] of diagonal naturality. Moreover, these 
authors showed how to compose graphs, in a way which would match with 
the composition of the corresponding natural transformations. A small 
adjustment is required for W-+W'-*W" in the cases where the letters of W 
and W" are not disjoint; with this adjustment, the graphs form a category 
which is actually a closed category (Kelly-Mac Lane [51]). 

Steenrod's original question now has the specific form: Given a graph 
<p:W-+W' (with words W and W on disjoint sets of letters), does there 
exist a canonical arrow f:W-*W' with this graph? If so, how many such 
arrows are there? For example, are there canonical maps 

(5.2) A^Hom(Hom(A, B), B), Hom(Hom(A, B), A^B? 

Again, there should be a canonical map 

(5.3) Hom(B, C)®Hom(A, B)-*Hom(A, C); 

namely, composition. To obtain it, one first applies an instance of d, to get 

Hom(B, C)®Hom(A, B)-»Hom(A, Hom(B, C)®Hom(A, B)<S>A). 

The inside term on the right then goes to C by two evaluations, 

Hom(B, C)<S>Hom(A,B)<S>A--»Hom(B, C)<S>B-*C. 

All this is just a formulation of the usual definition of the composite g°f as 
(g/)(a)=gCfa)> via two evaluations on an element a € A. It does also exhibit 
the essential point of difficulty: To get a canonical map W-+W' as in (5.2) 
one may need to go through a composite which involves intermediate words 
longer—possibly much longer—than W or W'. Therefore it is not obvious 
how to make a finite test for the existence of a canonical map f:W-*W'. 

Now a formally similar question had long since arisen in logic, more exactly 
in proof theory as developed by G. Gentzen [37]. One deals not with words 
but with formulas. The letters stand for propositions, p®q is replaced by 
p&q, standing for "p and q", while Hom(p, q) becomes p=>q, standing for p 
implies q. One asks not for canonical maps built up from constituent 
instances, but for proofs built up in the accustomed way from constituent 
inferences. One of these is the famous inference modus ponens (also called 
"cut"): Given p and p^q, one may infer q. The crucial difficulty is the same: 
To find all proofs leading to q, one may go through premises involving 
intermediate formulas p much longer than q. Now in this case Gentzen had 
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found a way around, recorded in what he called a cut elimination theorem. 
Lambek [54], [55] in studying the corresponding categorical problem had 
the insight to see that this method from logic might be carried over to closed 
categories. Kelly and Mac Lane, studying Lambek's work, could not under­
stand some of the details (for good reason; it turns out that they are wrong, 
and there seems to be no easy direct repair), so recast the problem to arrive 
at a solution. 

This method first describes two special classes of canonical maps called 
respectively the "central" and the "constructible" maps. The central maps 
are to be the canonical maps for the monoidal structure; they are defined 
formally by recursion: All instances of a, b, and c are central; if ƒ and g are 
central, so is /®g, and the composite of two central maps is central. For any 
central ƒ : V-»W any pair of corresponding letters in the graph of ƒ are on 
opposite sides of the arrow -*, simply because this is evidently the case for 
the basic central maps a, b, and c. Any word V can be written as an iterated 
product V=Pi<8> • • • ®Pm, with suitable parentheses, of prime factors Ph 

where a word is prime if it is not a tensor product; that is, if it is I, a letter, 
or a word of the form Hom(U, W). Intuitively, a central map ƒ : V-* W does 
not change the prime factors Pt of V (except for I's), but amounts only to 
addition or removal of factors I, rearrangement of parentheses, and permu­
tation of factors. Thus the centrals can be described exactly: 

THEOREM 5.1. If V and W are words not involving Horn, and with no 
letters in common, each graph <p : V->W which is a bijection from letters of V 
to letters of W is the graph of exactly one central map f : V—»W. 

Here "exactly one" uses the appropriate notion of equality, that two 
central maps ƒ, g : V-» W are called equal when they are formally equal on 
the grounds of the axioms for a monoidal category. Hence, this theorem 
really amounts to the statement that, in a monoidal category, every diagram 
of canonical maps a, b, c must commute. It was proved by Mac Lane [73] 
and independently by Epstein. Mac Lane's then proof of the theorem was 
quite correct, but his statement was deficient. He did not discuss words at 
all, so that he considered not the formal word A®B in two letters A and B, 
but only the functor MxM—>M which it determines (on any monoidal 
category M). As a result, his formulation, carefully examined, confused the 
word A®B with the word B®A and his theorem would thus assert that the 
two central maps c:A<2)B-^B<2>A and 1: A<8>B-»A<8>B are equal. Kelly 
subsequently set this all straight [50]. 

The analog of Theorem 5.1 for associativity only is simpler: Any diagram 
of tensor products of instances of the associativity isomorphism a must 
commute, given only that a is natural in its three arguments and that it 
satisfies the pentagonal condition. In this case the letters involved in the 
words stay in the same order under any associativity, so the refinement 
involved in using graphs is needless. But the theorem does have the 
following two interesting aspects. 

First, its proof is a simple paraphrase of the elementary proof of the 
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Jordan-Holder theorem for finite groups: Given two centrals V->W, rep­
resented as composites of instances of a, regard these chains as if they were 
composition series and show that they are equal by a suitable induction 

by fitting in a polygon deforming the one first step to the other. For 
Jordan-Holder, that polygon at the top is a diamond, while for the coher­
ence theorem it is either a diamond (a use of naturality) or a pentagon; the 
details appear in [73] or in Categories work [76, p. 163]. 

Second, the coherence theorem, though legally a theorem of algebra, 
really came up in topology first. It was probably found first by Stashefï in his 
study of H-spaces which were not associative, but only associative up to a 
homotopy: x(yz)~(xy)z. Following pregnant ideas of Dyer and Lashof he 
considered also cases where this associativity homotopy, call it a, satisfies a 
further condition, which was a pentagonal condition up to homotopy. These 
ideas, represented geometrically in all higher dimensions, implicitly contain 
the above coherence theorem (and more), though I confess that I would not 
have discovered this from just inspecting Stasheff's paper [90]; it took 
personal contact, at one of the Society's Summer Research Institutes (1963). 
There is still another topological source: When Epstein, after working with 
Steenrod, decided to develop the properties of Steenrod operations in an 
arbitrary abelian category he was forced to consider coherence theorems, 
and so rediscovered Theorem 5.1 and other results about coherence. 

Returning to closed categories, define a constructible ƒ: V->W by recur­
sion as follows: Every central map is constructible, as are the maps of the 
following three types (A, B, C, D arbitrary words): 

(i) V - ^ A 0 B ^ C ® D - ^ W , 

where x and y are central, f:A-*C and g:B-*D constructible; 

(ii) V -=U Hom(B, C) -*-> W 

where y is central, ƒ: V(8>B-»C constructible, and irf is its transpose unaer 
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the basic adjunction, ® to Horn; 

V >H(B, C)®A®D - ^ ^ H(B, C)®B®D 

where H is short for Horn, while f:A-*B and g:C®D-*W are 
constructible and x is central. 

This definition allows us to test (in a finite number of steps) whether there 
is a constructible V-*W with a given graph. In fact, the definition instructs 
us thus: Ask first if there is a central map with this graph. If not, try to factor 
the graph as a tensor product of two graphs, and test these (simpler) graphs, 
as in type (ii) above. If this fails, ask if the codomain W has the form 
W=Hom(B, C), except for some factors I, and then test instead for con­
structible maps V(g)B-»C with the appropriate graph. Finally, if all these fail, 
consider in the domain V all prime factors of the form Hom(B, C). For 
each, ask if there is another factor A (prime or composite of primes) and a 
constructible map f:A->B of appropriate graph, and determine whether 
this map, followed by evaluation e as in type (iii) above, will give a 
constructible map of the required graph. At each step in this process the 
problem is reduced to an evidently simpler one (or simpler several), so the 
whole process is finite. 

Of the types (i)—(iii), the most characteristic one is (iii), which we call 
prepared evaluation, because it consists of an application of an evaluation e, 
followed by some other constructible g, but applied only after "preparation" 
by the prior application of 1®/®1. For example, if we ask for the transpose 
of a canonical map like (5.3) above, with codomain Hom(A, C), this method 
applies and gives precisely the expected map, composition. Similarly, given 
the two questionable graphs formulated in (5.2), prepared evaluation does 
produce a constructible map with the first graph, namely the transpose of 

A ®Hom(A, B) - ^ Hom(A, B)<g> A - ^ B. 

In the second case of (5.2), the three tests quickly indicate that there is no 
constructible map with this graph. Hence these tests are indeed effective. 

Now testing for constructibles with a given graph is the same as testing for 
canonical maps, and so provides an answer to Steenrod's query, all in virtue 
of 

THEOREM 5.2. Every canonical map is constructible. 

Since the constructible maps include all instances of a, b, c, d, and e, the 
crucial part of the proof of this theorem is the demonstration that the 
composite of two constructible maps is again constructible. The proof (given 
in detail in Kelly-Mac Lane [51]) proceeds by induction and so amounts 
essentially to the elaborate but straightforward examination of nine cases of 
composition—each factor of the composite can be one of the three types (i), 
(ii), (iii) in the definition of constructible. Thus the proof of this theorem is 
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essentially a cut-elimination (=composition-elimination) process. However, 
I do not know any way in which this cut-elimination theorem can be derived 
from any version of the Gentzen cut-elimination theorem of proof theory. 
At present, there exists only a striking analogy. 

Using this cut-elimination theorem, it is plausible that we can also exhibit 
all possible constructible maps V-» W of given graph and so determine when 
such a map is unique. As Kelly-Mac Lane observed, this gives a coherence 
theorem: 

THEOREM 5.3. If V and W are words which do not involve the (nonletter) 
I, there is at most one canonical V-+W with given graph. 

To get such a coherence (uniqueness) theorem, some such provision about 
I is necessary. Indeed, in any closed category one may define the "dual" 
A*=Hom(A, I) of an object A and hence also the double dual A**. The 
search for a constructible map K A : A - * A * * quickly yields one—a special 
case of the first map of (5.2), with B=I. For the category of modules or of 
vector spaces this map KA is just the familiar map sending each A to its 
double dual. By this example, it is easy to see that the composite 

^V ********* -v ^L *** ^ ^y l******* 

cannot be the identity. This produces a triangular diagram which does not 
commute and hence a graph which is realized by two different canonical 
maps. This is only one of a whole family of examples. For example, in 1950 
Arens [1], [2], [3], in his study of canonical products for Banach algebras, 
produced two different canonical maps 

A**<g>B** »(A®B)**. 

It is interesting to note that Arens at that date had essentially (under the 
name phylon) a definition of closed category. 

Thus the coherence Theorem 5.3 must have some qualifications about the 
use of I's. Actually, the Kelly-Mac Lane theorem has a more cautious 
qualification—they call a word constant if it involves no letters (i.e., is built 
up only from I), and they prove Theorem 5.3 for words V and W which 
involve a word Hom(U, C) with C constant only when U is also constant. 
Going further, Voreadou has used similar methods to handle also graphs 
which additionally record linkages of the I's, and she can establish a 
best-possible coherence theorem stateable in terms of graphs alone. It 
remains to find complete conditions (graphs+?) for the equality of two 
canonical maps V—»W. 

There are a number of other coherence problems. The methods used by 
Kelly-Mac Lane will also prove that "all diagrams commute" in situations 
involving several categories relative to a given closed category, with various 
functors and natural transformations between them; again there are restric­
tions on the presence of the nonletter I (see Kelly-Mac Lane [51]). A 
number of other coherence problems are handled in the same Springer 
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Lecture Notes, Volume 281 on Coherence in categories. For example, 
Laplaza treats the question of the coherence of a tensor product which is 
distributive over a direct sum ©, as in the case of modules. He assumes that 
the distributive law is an isomorphism A®(B©C)=(A<S>B)0(A®C) and 
that a whole sequence of appropriate identities are satisfied, and then shows 
that two canonical maps V—»W are equal when they have the same 
"distortion", suitably defined (and resembling the notion of the same 
"graph"). 

Another difficult case is that of a closed category in the sense in which this 
was originally defined by Eilenberg-Kelly: A category not equipped with a 
tensor product, but having an internal hom-functor Horn together with a 
structural map 

L : Hom(B, C) -+ Hom(Hom(A, B), Hom(A, Q) 

—the map which would have been the transpose of composition 

Hom(B, C)®Hom(P, B) -* Hom(A, C) 

had a ®-product has been present. This structural map L satisfies a suitable 
(pentagonal, even) condition, plus other identities. The problem is again that 
of proving that "all diagrams commute." Currently there appears to be 
considerable progress, in work of Day and Laplaza, on this question. 

6. Naturality and categories. Arrows f:X—»Y were first used to vis­
ualize continuous functions by some topologist—reportedly by Hurewicz in 
seminar lectures about 1940. Once used, they present intriguing questions 
which raise new points of view about algebra. Each continuous map ƒ 
"induces" a corresponding map on (integral) homology 

(6.1) H„(/):H„(X)^Hn(Y), 

but if ƒ is just an inclusion (of a subspace X c Y), the map Hn(f) on homology 
is by no means necessarily also an inclusion; for example the inclusion 
S*<=D2 of the circle as boundary of the disc D2 sends the one-dimensional 
homology of the circle to zero. It is probably for this reason that early 
pictures of maps by inclusions /(X)c Y turned out to be inadequate. Also, a 
continuous map of spaces does induce homomorphisms H„(f) of groups— 
but that homomorphism is not necessarily onto, in flagrant disregard of the 
earlier view by algebraists (notably in van der Waerden's Modern algebra) 
that a homomorphism of groups is a mapping onto. 

Some useful maps arising in geometry are clearly "natural" ones, like the 
map of a vector space V to its double dual V-»V** or the map of an 
abelian group G to its double character group, G-+G**. Initially, it was 
easy enough to leave this notion informal, with the side observation that for 
finite-dimensional vector spaces V the usual isomorphism V=V* was not 
natural, because it depended on choices (here, on a choice of bases). The 
issue of naturality becomes more perplexing when it turns out that the 
desired "universal coefficient formula" for cohomology can't really be 
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expressed by a single "formula", because the resulting isomorphism, as 
expressed in (2.12), is not a natural one. One is forced instead to use the 
language of exact sequences, as in (2.13), and one then really is relying on 
the fact that the maps present in the sequence are natural ones. For 
example, for a chain complex C and an abelian group A, why is the 
canonical map 

(6.2) Hn(Q A) -* Hom(Hm(C), A) 

a natural one? The question becomes more pressing when one needs, for 
example for Cech cohomology, to compute this expression Horn or the 
corresponding Ext (of (2.12)) over an inverse system of complexes or 
groups. Then the naturality of these maps becomes a technical question and 
not a theological one. 

These were the sorts of circumstances which led Eilenberg-Mac Lane in 
1942 to analyse naturality. The canonical map x :G—»G** to the double 
character group is natural because, for each group homomorphism ƒ : G-^>H, 
one has xf=/**x, a s expressed by the commutative diagram 

(6.3) 

Similarly, the map (6.2) from cohomology is natural because, for any map 
h : C->C' of chain complexes one has a commutative diagram 

( 

ƒ 

T 

- M ) 

T 

*—( 

^ r 

ƒ** 

_r** 

Hn(C, A) > Hom(Hn(C), A) 

(6.4) Hn(h) Hom[(H„h, 1)] 

Hn(Q A) • Hom(Hn(C), A). 

This formulation in turn required clarity as to the induced maps involved— 
the map Hn(h) : Hn(C)-*Hn(C') induced on homology and going in the same 
direction as the given h, plus the induced map Hn(h) : Hn(C', A)->Hn(C, A) 
on cohomology going in the opposite direction. Thereby we were led to the 
general notion of a functor on chain complexes to abelian groups—covariant 
in the case Hn of homology and contravariant in the case of cohomology. In 
its turn, a general treatment of functors on mathematical objects of any kind 
requires the development of the notion of category, while the evidently 
relevant study of the category of all objects of a given kind required 
attention to the foundational questions involved in that "all." 

These ideas of category, functor, and natural transformation motivated 
thus by topological questions and explicitly formulated by Eilenberg-Mac 
Lane in 1945, have provided a fitting framework for later developments. 
The idea of a "universal construction" was first formulated explicitly by 
Pierre Samuel in 1948, and directed to the understanding of questions about 
free topological groups; it really required a categorical setting. This was 
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finally provided by D. M. Kan's formulation of the notion of adjoint functor 
in 1958—again based on needs dictated by examples of adjoints acting on 
simplicial sets, as well as by the basic fact (already noted in §5) that 
Hom(A, - ) can be described as the left adjoint of -®A. Once disengaged, 
this notion of adjoint functor turned out to be present and helpful in many 
strikingly different contexts. The basic existence theorem for free objects, 
known after a fashion to Bourbaki, was effectively formulated in Freyd's 
adjoint functor theorem (Freyd [34]). In this connection, I had long been 
persuaded that categorical notions would provide an appropriate setting for 
universal algebra. This was indeed accomplished; on the one hand, Law-
vere's 1963 notion of an "algebraic theory" showed that one should 
formulate varieties of universal algebras not in terms of particular defining 
operators (unary, binary, ternary, • • •) but in terms of all the operations 
possible for that variety. On the other hand, Eilenberg and Moore in 1965 
showed how a pair of adjoint functors produced in the "underlying" 
category a single functor with a monad (or "triple") structure, and how the 
upper category could be reconstituted from that monad as a category of 
"algebras" for the monad. The elegance of this construction was emphasized 
by the fact that their definition of "algebras" for the monad turned out to be 
the exact and simple analog of the definition of the modules over a ring or 
the actions of a group (cf. Mac Lane [76, Chapter VI]). On these grounds 
Beck was also able to obtain his decisive theorem characterizing the cate­
gory of all algebras among other categories leading to the same monad. In 
this way the "universal" parts of algebra have been drastically reformed by 
the ideas of category, natural transformation, and adjoint functors, all 
arising from topology. The transformation still continues, sparked currently 
by the extensive applications of ideas from universal algebra to automata 
theory (Eilenberg [18], Elgot [32], Manes [80]). 

The development of these categorical ideas originating from topology has 
also had a reverse use in topology and geometry. The notion of the 
localization of a category (Gabriel-Zisman [36]) has led in particular, in the 
hands of Quillen [84] and Sullivan [92], to the localization of homotopy 
theory—in particular, to the study of rational homotopy. The recent de­
velopment of algebraic K-theory (see, e.g., Bass [7]) has involved many 
categorical constructions, and this is especially true of Quillen's recent 
definition [85] of the higher K-groups. The Grothendieck school of alge­
braic geometry, depending as it does on maximal abstractions and generality, 
has been extensively categorical; indeed some portion of this development, 
notably work by Hakim [40] and Rivano [86], are practically purely categor­
ical. 

The influence of logic and foundations has also been strong. At several 
points, for example in 1959 [70], I had pointed out that the proper 
treatment of big categories, such as categories of functors, did require a 
different approach to the foundations and to the use of set theory. In 1964, 
Lawvere [58] had observed that the familiar foundational scheme of using 
axioms (Zermelo-Fraenkel or Gödel-Bernays) for set membership might be 
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replaced by a different sort of axioms on the category of sets—using 
composition of functions rather than membership of elements as the decisive 
primitive notion. This approach did not become fully effective until it was 
combined by Lawvere and Tierney with an idea coming from the Grothen-
dieck school of algebraic geometry: the characterization by Giraud of the 
category of all sheaves of sets on a given (Grothendieck) topology (see 
Artin, Grothendieck, and Verdier [4]). It turned out that the axioms for the 
category of sheaves could be suitably restructured in "first order" form so 
that they also applied to the category of sets. Both the classical two-valued 
logic and the intuitionistic logic play suitable roles; at present, this study of 
"topoi" is developing very rapidly. (Koch-Wraith [53], Lawvere [59], Freyd 
[35], Mac Lane [77]). It points up in clear form the advantages to be gained 
from not isolating mathematical logic as a sort of separate and self-
contained specialty. 

7. What is algebra? This essay has recounted a number of instances in 
which the development of algebraic ideas has been stimulated by problems 
or queries arising outside algebra; in particular, in logic or in geometry. 
These developments have been varied and often unexpected: One would 
hardly have guessed ahead of time that the study of separably generated 
extensions of a field would be assisted by axiomatic formulations of linear 
independence or that the foundations of mathematics would be vitally 
altered by the consequences of a theorem characterizing the category of 
sheaves on a topological space. The examples of outside influences on 
algebra which I have recounted are largely drawn from my own work. More 
narrowly, many of them are dominated by the results of the constructions 
Horn and ® on groups or spaces. There are many other instances of effects 
of geometry upon algebra, such as the continuing input from algebraic 
geometry in the theory of commutative rings or the stimulus to multilinear 
algebra from geometry and mechanics. 

On some occasions I have been tempted to try to define what algebra is, 
can, or should be—most recently in concluding a survey [72] on Recent 
advances in algebra. But no such formal definitions hold valid for long, since 
algebra and its various subfields steadily change under the influence of ideas 
and problems coming not just from logic and geometry, but from analysis, 
other parts of mathematics, and extra mathematical sources. The progress of 
mathematics does indeed depend on many interlocking, unexpected and 
multiform developments. 
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