AN L^1 -SPACE FOR BOOLEAN ALGEBRAS AND SEMIREFLEXIVITY OF $L^{\infty}(X, \Sigma, \mu)$

BY DENNIS SENTILLES

Communicated by Alexandra Ionescu Tulcea, June 8, 1975

This note indicates how one can use the ideas of strict topologies on spaces of continuous functions to, at a single stroke, obtain an extended construction of L^1 -spaces without reference to measure, obtain ordinary $L^1(X, \Sigma, \mu)$ -spaces as the natural dual of $L^{\infty}(X, \Sigma, \mu)$ and obtain a view of the dual pairing (L^{∞}, L^1) that is very much like that of (C, M), where C is a space of bounded continuous functions and M a space of bounded Baire or Borel measures.

Earlier results, [1] and [4], suggest this development. In [1], Buck shows that M, the compact regular Borel measures on locally compact X, results as $(C(X), \beta)'$, where β is the topology on C(X) defined by the seminorms $||f||_{\xi} = \sup\{|f(x)\xi(x)|: x \in X\}$, with $\xi \in C$ vanishing at ∞ . In [4], this writer showed how β -methods extend to completely regular X, with $\xi \equiv 0$ over compact sets, or zero sets, in $\beta X \setminus X$. For $X = \{1, 2, ...\}$, $I^{\infty} = C$ and $I^{1} = M$, and by [1], $(I^{\infty}, \beta)' = I^{1}$. By choosing $\xi \equiv 0$ over certain closed nowhere dense subsets of the appropriate Stone space, we show herein that this result is more than the small coincidence formally expected.

2. The space $L^1(A)$. Let A be a Boolean algebra [6] and let S be its Stone space with $\eta(a) \subset S$ denoting the compact-open set corresponding to $a \in A$.

We define an indicator function on A, χ : $A \to C(S)$, by $\chi(a) = \chi_{\eta(a)}$ and let $L^{\infty}(A)$ be the closed linear span of $\chi(A)$ in C(S) in the $|| \ || \ (=$ uniform convergence on S) topology on C(S). In fact, $L^{\infty}(A) = C(S)$.

For each increasing sequence $a_n \in A$ with $a = \sup a_n$ (i.e., $a_n \nearrow a$), let $Q = \eta(a) \backslash \bigcup_{n=1}^{\infty} \eta(a_n)$ and define the β_Q topology on $L^{\infty} = L^{\infty}(A)$ by the seminorms $||f||_{\xi}$ for $f \in L^{\infty}$ where $\xi \in C(S)$ and $\xi \equiv 0$ on Q. Let β be the inductive limit topology over all such Q. We remark that β may be neither Hausdorff, nor finer than pointwise convergence and is the $||\cdot||$ -topology iff all increasing $\{a_n\}$ with a supremum in A are finite.

We now define $L^1(A)$ by $L^1(A) = (L^{\infty}(A), \beta)'$, the β -dual of $L^{\infty}(A)$. It is possible that $L^1(A) = \{0\}$ ([6, p. 65] and (2) below).

AMS (MOS) subject classifications (1970). Primary 46A20, 46B10; Secondary 54H10, 28A60, 28A30.

The crucial result is

THEOREM 1. $\chi: A \longrightarrow (L^{\infty}(A), \beta)$ is a vector measure.

PROOF. If $a_n
ightharpoonup a$ and W is a β -neighborhood of 0, choose $\xi \equiv 0$ on Q so that $||f||_{\xi} \leqslant \epsilon$ puts $f \in W$. If n_0 is chosen so that $S \setminus \eta(a) \cup \eta(a_{n_0}) \supset \{x : |\xi(x)| \ge \epsilon/2\}$, then $||\chi(a_n) - \chi(a)||_{\xi} \leqslant \epsilon$ for $n \ge n_0$ and we are done.

Consequently,

THEOREM 2. The equality $\mu(a) = (\hat{\mu} \circ \chi)(a)$ defines a 1-1, onto correspondence between the positive elements $\hat{\mu} \in L^1(A)$ and the finite-valued positive measures on A.

PROOF. $\hat{\mu} \circ \chi$ is obviously a measure on A. Conversely, if μ is given, $\phi(\sum_{i=1}^n \alpha_i \chi(a_i)) = \sum \alpha_i \mu(a_i)$ extends uniquely to a bounded functional on L^{∞} which is then β -continuous because μ is a measure.

3. Spaces $L^{\infty}(X, \Sigma, \overline{\mu})$. Let A be the Boolean algebra $\Sigma/\overline{\mu}^{-1}$ (0) under \cap , Δ , where $\overline{\mu}$ is σ -finite. Let $[\]$ denote equivalence classes in $L^{\infty}(\overline{\mu})$ or A alternatively. Define (e.g. [6, p. 155]) $\theta \colon L^{\infty}(X, \Sigma, \overline{\mu}) \to L^{\infty}(A)$ by $\theta [\chi_E] = \chi[E]$, extended linearly and by uniform closure to all of $L^{\infty}(X)$; θ is an $||\ ||_{\infty} - ||\ ||$ isometry onto. Let β_{∞} be the weak topology on $L^{\infty}(\overline{\mu})$ making θ β continuous into $L^{\infty}(A)$; θ is a $\beta_{\infty} - \beta$ homeomorphism.

THEOREM 3.
$$(L^{\infty}(\overline{\mu}), \beta_{\infty})' = L^{1}(X, \Sigma, \overline{\mu}) = \theta'(L^{1}(A)).$$

The proof depends on the fact that $\overline{\nu} \in L'(\overline{\mu})$ allows $\nu[E] = \overline{\nu}(E)$ to be a well-defined measure on A.

THEOREM 4. β_{∞} is the finest locally convex topology on $L^{\infty}(\overline{\mu})$ with dual $L^{1}(\overline{\mu})$, and, moreover, on $\|\cdot\|_{\infty}$ -bounded sets, β_{∞} agrees with, and is the finest locally convex topology on $L^{\infty}(\overline{\mu})$ to so agree with, convergence in $\overline{\mu}$ -measure. Consequently, the β_{∞} -continuity of linear maps is determined on such sets by continuity under convergence in $\overline{\mu}$ -measure.

The proof of this result is most easily obtained through Theorem 6 below.

4. Further results. Among other results we select two which seem to most justify our constructions above. For $\hat{\nu} \in L^1(A)$ let $||\hat{\nu}|| = \sup\{|\hat{\nu}(f)|: f \in L^{\infty}, \|f\| \le 1\}$. For $f \in L^{\infty}$, let $\phi_f \in (L^1(A), \|\|\|)'$ by $\phi_f(\hat{\nu}) = \hat{\nu}(f)$. By $(L^1(A), \|\|\|)' = L^{\infty}(A)$ we mean that the map $f \to \phi_f$ is an isometry onto $(L^1(A), \|\|\|)'$. This map is 1-1 iff β is T_2 .

THEOREM 5. If A is σ -complete and satisfies the countable chain condition and β is T_2 , then $(L^1(A), || || ||)' = L^{\infty}(A)$.

The proof depends on the fact that $L^1(A)$ coincides with Dixmier's normal measures on S under these hypotheses. The converse may not generally hold; for example if $A = 2^{[0,1]}$ and we assume that no subset of [0,1] has cardinal

of measure zero. Indeed for algebras without the countable chain condition, one should go to the topology $\overline{\beta}$ defined by sets $Q = \eta(\sup B) \setminus \bigcup_B \eta(b)$ where $B \subset A$, whereupon this theory begins to meet that of [3].

THEOREM 6 (DUNFORD-PETTIS). For a bounded subset H of $L^1(A)$, these are equivalent:

- (1) H is weak* (i.e., $\sigma(L^1, L^{\infty})$) countably compact,
- (2) $H \circ \chi$ is uniformly absolutely continuous with respect to μ .
- (3) If $a_n
 ightharpoonup a$, then $\|\hat{v}_{a_n} \hat{v}_a\| \to 0$ uniformly over $\hat{v} \in H$, where $\hat{v}_b(f) = \hat{v}_b(\chi(b)f)$.

Note that (2) applied to $H = {\hat{v}}, \hat{v}$ fixed in $L^1(A)$ yields: $\epsilon > 0 \Longrightarrow \exists \delta > 0 \Longrightarrow \nu(a) < \delta \Longrightarrow \nu(a) < \epsilon$.

There are a number of obvious questions remaining, but in particular: When and only when is $L^1(A)$ the L^1 -space of a Boolean measure algebra?

REFERENCES

- 1. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. MR 21 #4350.
- 2. J. B. Conway, The strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72 (1966), 75-78. MR 32 #4509.
- 3. J. Henry and D. Taylor, The $\overline{\beta}$ topology for W*-algebras, Pacific J. Math. (to appear).
- 4. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 45 #4133.
- 5. F. D. Sentilles and D. C. Taylor, Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc. 142 (1969), 141-152. MR 40 #703.
- 6. R. Sikorski, *Boolean algebras*, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 25, Springer-Verlag, Berlin, 1960. MR 23 #A3689.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65201