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1. The purpose of this paper is to announce a number of interesting new 
results concerning the geometry of normed linear spaces. In particular, we 
present some new characterizations of rotund normed linear spaces and of inner 
product spaces. The general theme connecting the two topics is the realization 
that special cases of conditions characterizing inner product spaces are often in 
themselves characterizations of rotundity. 

Details and proofs will appear elsewhere. 
Throughout the paper E will denote a real normed linear space (n.l.s.) and 

M a subspace of E, denoted MCE. If {xi}
n
=1 is a subset of E, [xi]

r}-l will 
denote the linear span of {xf}. 

2. Rotundity. Recall that a n.l.s. E is said to be rotund [3] (or strictly 
convex [2] ) if every point on the unit sphere in E is an extreme point. Our first 
result shows that rotundity is characterized by a very desirable condition involving 
the cone in E generated by a set of vectors. 

DEFINITION 1. Let {*,},?= i be a normalized linearly independent pair of 
vectors in E. Then C{xt) = {axxx + a2x2\a1 • a2 > 0} is called the cone of 
{*,}?=! in#. 

THEOREM 1. E is rotund o for any normalized linearly independent set 
{*/}?= i in E, the set of points in [xi]j-1 equidistant from xt and x2 is a subset 
ofC{xt}. 

Another characterization of rotundity which has a similar flavor is based on 
the following lemma which is interesting in its own right. 

LEMMA 1. Let E be a 2-dimensional n.l.s. Then every point x G E with 
\\x\\ < 1 is the midpoint of a chord of the unit sphere in E (i.e. there exist xt and 
x2 with llxjll = ||x2|| = 1 for which x = (1 - X)xt + XJC2, 0 < X < 1). 

A natural question concerns the uniqueness of such a chord (for x ¥= 0). 
The answer is given by 

AMS (MOS) subject classifications (1970). Primary 46B99, 46C05, 46C10. 
1 Research partially supported by NSF grant GP 33778. 

Copyright © 1975, American Mathematical Society 

1087 



1088 J. R. HOLUB [November 

THEOREM 2. E is rotund <> given any two-dimensional subspace MCE and 
any x E M with 0 < ||jt|| < 1, then x is the midpoint of a unique chord of the 
unit sphere in M. 

Another result of a similar nature is 

THEOREM 3. E is rotund <• given any two-dimensional subspace MCE 
and any x E M with 0 < ||jt|| < 1 there exists a unique pair of normalized vectors 
xt and x2 in M for which x = xt + x2. 

A final result links rotundity to the number of linearly independent points 
which norm a projection on E. 

DEFINITION 2. If E and F are n.l.s. and T: E —-» F a bounded linear 
operator, a point x E E for which ||x|| = 1 and || J!x:|| = ||71| is called a norming 

point of T. 

THEOREM 4. E is rotund o given any n-dimensional subspace MCE (1 < 
n < 4- °o) and any projection P. E —> M, then P has at most n linearly independent 
norming points. 

3. Orthogonality and inner product spaces. Several (nonequivalent) defini­
tions of orthogonality in n.l.s. have been given by various authors. Two of these 
are 

DEFINITION 3 (BIRKHOFF [1]). x 1B y o | |* 4- Xy|| > \\x\\ for all X. 

DEFINITION 4 (JAMES [4]). x 1/ y o \\x + y\\ = \\x -y\\. 

Interesting results concerning the characterization of inner product spaces 
through the assumption of additional properties of ^-orthogonality (Definition 3) 
have been obtained by Birkhoff [1] and James [5], [6]. We continue this study 
in the following direction. 

In an inner product space, if y E [x(] ?_ j and y 1 xt for all i, then y = 0. 
We show that this situation essentially characterizes inner product spaces with 
respect to both 2?-orthogonality and /-orthogonality. 

THEOREM 5. E is an inner product space o whenever {^I}"=1 is a linearly 
independent set of normalized vectors in E (n > 3) and y E [xt] £_ x with y iB xt 

for all i, then y = 0. 

COROLLARY 1. E is an inner product space <> given {JC^JL 1 a linearly 
independent normalized set in E (n > 3) and {^*}"=1 C E* with \\xf\\ = 1 = 
(xf, xt)for all i, then det[<xf, Xj)] =£ 0. 

Note. If in Theorem 5 we restrict ourselves to sets of two vectors, another 
characterization of rotundity is obtained. 

For the case of /-orthogonality we have 

THEOREM 6. E is an inner product space o whenever {x(}"=1 is a linearly 
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independent normalized set in E (n > 2) and y £ [xt] ?= t with y lj xt for all i, 
then y = 0. 

Finally we have two more straightforward characterizations. 

THEOREM 7. E is an inner product space o whenever \\xx\\ = ||JC2||, then 

i i a i """ 2* 

THEOREM 8. E is an inner product space o whenever x iB y then x lj y. 

Note. In regard to Theorem 8, Day has shown that E is an inner product 
space o whenever x Lj y then x lB y [3]. 
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