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SOME MATHEMATICAL PROBLEMS IN BIOLOGY 

BY S. I. RUBINOW 

ABSTRACT. A survey is presented of some mathematical problems 
encountered in biological studies. A brief description of the problems to be 
discussed are as follows. 1. Blood flow: The mean flow of blood through 
arteries and veins does not behave in accordance with Poiseuille's law all 
the time. 2. Tracer analysis: The inferences to be drawn from radioactive 
tracer studies of physiological systems, called compartment analysis, is an 
inverse problem. 3. Cell populations: The growth of cell populations is 
conveniently described by differential equations which utilize either age 
and time or maturity and time as independent variables. 

I would like to take this opportunity to tell you about some of the 
mathematical problems I have encountered in studying biological phenomena 
during the past ten years or so. These phenomena are all describable by 
differential equations. However, I think you will see that the problems with 
which they are associated have novel features when compared to those 
usually encountered in engineering and the physical sciences. My descriptions 
will be unsatisfactory in the sense that they will be very brief. However, 
brevity will permit me to present you with an overview of several 
biomathematical problems deriving from biological experience. 

Steady blood flow. I will describe first a problem in biomechanics, 
because the latter is one area of biology in which the underlying mathematical 
theory is very well understood. When the mean steady volume flux of blood 
through the vena cava of a dog is measured as a function of the pressure 
difference between the upstream end and the downstream end, a curve is 
determined [2], as illustrated in Figure 1. Similar observations have been 
made of viscous fluid flow through a rubber tube [2], as shown in Figure 2. 
In fact, the observed blood flux through the entire circulatory system of the 
dog displays similar properties [2]-[5]. In determining the curves of Figures 
1 and 2, the upstream pressure was held fixed while the downstream 
pressure was decreased. The noteworthy feature of these experiments is that 
when the pressure difference increases beyond a certain value, the flux does 
not increase, unlike the flow through a rigid tube. 

A simple theory of viscous fluid flow through a tube can account for these 
observations provided the collapsibility of the tube is accounted for [6]. In the 
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FIGURE 1. The steady flux of blood through the superior vena cava of a dog is shown as a 
function of the pressure difference pi-p2. Here p1 is the pressure in the jugular vein (upstream), 
held fixed, and p2 is the downstream pressure which was varied. From Rubinow and Keller [6], 
redrawn from the work of Brecher [2].1 
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FIGURE 2. The steady viscous fluid flux through a collapsible rubber tube is shown as a function 
of the outlet pressure p2 for fixed inlet pressure p1. From Rubinow and Keller [6], redrawn from 
the work of Brecher [2]. 

interest of simplicity, I will present the theory for a tube of circular cross 
section only. Thus, we assume an incompressible fluid of viscosity JUL is flowing 
steadily through an elastic tube of length L. Let the upstream and down­
stream pressures be pi and p2, respectively, while the pressure surrounding 
the tube is p0. At a given distance z along the tube, the pressure is denoted by 
p(z) (see Figure 3). The cross sectional area of the tube is assumed to depend 
only on the transmural pressure difference p(z)-p0. In addition, we assume 
that Poiseuille's law holds locally, so that the steady flux Q is given as 

(1) Q = -(7ra4/8|UL)(dp/dz). 

Here a is the radius of the tube. However, the radius a depends on the 
pressure p, for example, in accordance with the law of Laplace. Assuming the 
tension T(a) in the tube wall is known as a function of the radius, it follows 
that the function a = a[p(z)-p0] is determined by the condition of equilibrium 

(2) T(a)/a = p(z)-p0. 

1 Figures 1, 4, 5, 6, 10 and 11 are published from Mathematical problems in the biological 
sciences with permission. Copyright 1973 by Society for Industrial and Applied Mathematics. 
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FIGURE 3. Schematic diagram of viscous fluid flow through an elastic tube of circular cross 
section, with upstream pressure pl9 downstream pressure p2, and external pressure p0. 

Integrating equation (1) between the limits 0 and L, we readily obtain the 
result 

(3) QL = ^fP l"P°[a(p')]4dp'. 
ÖM' JP2-PO 

This equation is the principal result of the theory. It tells us that Q is 
proportional to L 1 , and that it depends on the two pressure differences, pi~po 
and p2-po. When pi-p2 is small, the mean value theorem indicates that Q is 
proportional to pi—p2, just as for a rigid tube, and in agreement with the 
initial rising portion of the flow curve of either Figure 1 or Figure 2. However, 
when p2—p0 is large and negative, Q approaches a limit if pi-po remains fixed, 
assuming the integral exists. The latter condition will be satisfied if the tube 
cross section decreases rapidly enough as the pressure difference p2-po 
decreases. 

We applied this theory to the flow through an artery. Physiologists have 
determined tension-radius curves for human arteries, and they have the 
general shape shown in Figure 4 [7]. Here a = 1 represents the resting radius 
of the artery when the transmural pressure difference is zero. We assume that 
the curve is extended in sigmoidal fashion for a < l , in agreement with the 
known properties of rubber tubes, the trachea and the small and medium 
bronchi [8]. 

Figure 5 shows the calculated quantity QL as a function of p2-po, for 
various values of the difference between the inlet pressure p\ and the external 
pressure p0. These curves are in qualitative agreement with those shown in 
Figures 1 and 2. 

When the external pressure is sufficiently great, buckling occurs, and the 
tube cross section is no longer circular, as we all know from trying to drink ice 
cream sodas through a straw too quickly. The buckling of elastic tubes is 
illustrated in Figure 6 by observations of the cross sections of rubber tubing in 
various stages of collapse during flow [9]. The theory presented must be 
modified by replacing the coefficient (7ra4/8|ui) by a suitable generalized 
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FIGURE 4. The solid line is a tension-length diagram for the external iliac artery, based on the 
experimental observations (circles) of Roach and Burton [7]. The dashed line represents p-p0 as 
given by equation (2). From Rubinow and Keller [6]. 

FIGURE 5. Theoretical curves of QL as a function of p2—p0 for various fixed values of the 
pressure difference pi-p0. The dashed horizontal lines represent asymptotes for which 
p2-po-»-°°- From Rubinow and Keller [6]. 
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conductivity <x. The slope of the cross section of such a collapsed tube can be 
calculated from elasticity theory [10], and the conductivity or can then be 
found by solving a suitable flow problem. The calculated shapes of the 
buckled cross section of such a tube are very similar to those observed in 
rubber tubes. The qualitative features of the theory presented for the flow 
through a collapsible tube are not thereby affected. 

| o o 

5 O 
FIGURE 6. The cross sections of Penrose rubber tubing in various stages of collapse during flow, 

as observed by Holt [9]. 

2. Tracer investigations of physiological systems. Physiological processes 
in multicellular organisms are often described as homeostatic, which means 
that the organism is maintaining the process at a steady state. An example of 
homeostasis is the maintenance in our blood of the level of glucose concentra­
tion. Perhaps the most ubiquitous method of investigating such processes 
utilizes radioactive tracers. These investigations lead to curves of radioactivity 
versus time, and their mathematical analysis is called compartmental analysis. 
I will present here the mathematical theory underlying such tracer studies 

tu]. 
By a compartment we mean a material (chemical species, biological entity) 

with a given size. Here size represents either mass or volume. The compart­
ment possesses a steady state flux of matter into and/or out of it. A 
compartment system is a set of n interconnected compartments. By inter­
connected we mean that there exists a steady state of flux between any two 
compartments. The flux may result from diffusion, chemical reaction, or 
other causes. The flux from compartment i to compartment j is usually 
different from the flux from j to i. An example of a three-compartment 
system is the blood plasma, extracellular volume, and tissue cells, with 
respect to a given metabolite. Flux at a steady rate is permitted to or from 
the exterior. 

Now assume that at time t = 0, a pulse of labeled matter is introduced into a 
compartment. The labeled matter is small compared to the unlabeled matter 
in any of the compartments, and leaves undisturbed the steady state fluxes. 
Finally, it is assumed that the mass distribution in any compartment is 
homogeneous, so that labeled matter sampled from any compartment is 
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representative of the matter in that compartment. The transient of labeled 
matter thereby introduced is designed to yield information about the steady 
state fluxes. 

The compartment equations governing the labeled matter flux are assumed 
to be 

(4) dp/dt = Lp, 

where p={pi} is a vector representing the labeled matter. Here L is a matrix 
of order n, and Lij represents the steady state flux or fractional clearance rate 
from compartment j to compartment i, i^j. The off-diagonal elements of L 
are positive or zero, but the diagonal elements, which represent the total 
efflux rates from each compartment to the other compartments and the 
exterior, are all negative. 

When compartments are observed, it is usually the concentration x={xi} 
that is sampled as a function of time. Therefore, we shall rewrite the 
compartment equations by setting 

(5) p = Vx, 

where V is a diagonal matrix, Vu representing the (constant) compartment 
size of compartment i. Then 

(6) dx/dt = V'LVx = Mx. 

Equation (6) equally well represents the fundamental equations of compart-
mental systems. Of course the solution to this equation system is well known, 
but for our purposes, we shall write the solution in the following manner. Let 
the time-dependent vector e be defined as 

(7) e = {ek% 

where A4 are the eigenvalues of L, or equivalently, of M. It is assumed they are 
distinct. It can be shown that they must have negative or zero real parts [12]. 
In practice, I have never seen a biological example possessing complex roots. 
Then 

(8) de/dt = Ae, 

where A is a diagonal matrix, Aü = Ai. We write the solution to the compart­
imentai equations as 

(9) x = Ae 

where A is a coefficient matrix of order n. By substitution of equation (9) into 
equation (6), it follows that 

(10) MA = AA. 

In other words, the columns of A are the eigenvectors of M. 
In a given experiment, a component of x is observed as a function of time, 

and by a curve-fitting procedure, fitted to a sum of exponentials, in accor­
dance with (9). This fitting determines n, the order of the compartment 
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system, A, and one row of the coefficient matrix A. Now we can state the 
problem of compartmental analysis, which you will recognize to be an inverse 
problem: Given, from observation, A and partial knowledge of A, that is to 
say, one or more rows of A, we wish to determine the compatible matrices L 
and V. 

The problem can be epitomized by what I call the bathtub model of 
compartmental analysis: given a set of bathtubs, with a fixed level of water in 
each bathtub. Any pair of bathtubs is connected by two pipes, with steady 
and, in general, unequal flows from one bathtub to the other. Each bathtub 
has a faucet, turned on or off, and a drain, open or closed. The water fluxes 
through all the pipes maintain the water level in each bathtub constant. A 
known amount of dye is injected into one of the bathtubs at t=0. Each 
bathtub has a blender which homogenizes the dye concentration in it 
instantaneously. By observing the dye concentration as a function of time in 
one or more bathtubs, infer as much as you can about the fluxes through all 
the pipes, and the volume of water in each bathtub. 

I will restrict my remarks here to inferences that can be made from 
observations of one compartment only. From (10), we can write down the 
following n—1 equations relating the matrix M to experimentally determined 
quantities: 

(11) Mpx(0) = AApe(0) = (dpx/dtp)t=0, p = 1, 2, • • •, n - l . 

In addition, we can write down the n equations relating M and its invariants: 
n n 

i = l , = 1 

t (MiiMu-MiiMii)= £ AiA,, 
( 1 2 ) U = i;Mj W-i ;Mj 

\M\ = ÀA2 - • • A„. 

The above (2n—1) algebraic equations constitute an underdetermined set of 
equations for the n2 elements of M. In making inferences regarding the 
manifold of those matrices L and V which are compatible with observation, we 
are usually aided by the knowledge that, because of biological considerations, 
certain matrix elements of L must be null. 

We have posed the following question: What are the minimal matrices of 
the system, those which permit the maximum number of null constraints that 
are compatible with observation? The answers to this and other such 
questions are easily visualized with the aid of graphs to represent the matrix 
L. For example, for n = 3, if the same compartment is injected and observed, 
there are only four minimal graphs possible, as shown in Figure 7. 

A node represents a compartment, and a branch represents an off-diagonal 
element of L. A directed line segment ending with an arrowhead represents 
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FIGURE 7. Graphs corresponding to the minimal matrices L of a three-compartment system, 
for which compartment 1 is both injected and observed (shown shaded). 

an excretion flux to the exterior. The diagonal element Lu is represented by 
the sum of all directed line segments leaving the node i. In the graphs of 
Figure 7, additional null constraints can only be applied by setting at most two 
excretion rates equal to zero. 

Finally, I will remark that there are special compartment systems for which 
it is possible to determine L and V uniquely, from the knowledge of Xi(t) only 
[13]. An example of such a system is the closed catenary compartment 
system, which has the structure shown in Figure 8. A catenary system is one 
for which the connection between compartments is "chainlike". A closed 
system is one for which all the excretion rates are zero. For a closed catenary 
system, M has 3 n - 2 nonzero matrix elements, but only 2n—2 of them are 
unknown, because of the constraints imposed on the matrix L by the closure 
property. They are uniquely determined from Xi(t) by means of equations 
(11) and (12). Furthermore it can be shown that for this system, 

(13) L = M 

where M is the transpose of M. It is possible to make this inference by 
invoking the conservation of matter flow into and out of each compartment. 
In doing so, the possibility that a compartment is a source or a sink is 
excluded. Hence L is likewise uniquely determined, and it also follows from 
the above relation that 

(14) L = V L V 1 

which determines the matrix V. 

otz^ec—xir;- • • • ^® 
FIGURE 8. Graph for a closed catenary n-compartment system. 
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3. Mathematical descriptions of cell population growth. The theoretical 
description of cell population growth has been greatly facilitated in recent 
years by the age-time formalism. Consider a population of living, proliferating 
cells. Each member has a chronological age a assigned to it, the time elapsed 
since its birth. The population is described by a cell density function n(a, t), 
where n(a, t) da is the number of cells in the age interval a to a+da, at time t. 
The total population at time t, N(t), is obtained from it by summation, 

(15) N(t)= f n(a, t) da. 

Even though the age of a cell is not usually an observable quantity, many cell 
properties are age dependent: cell division and the number of cells in mitosis, 
for example. 

The cell density function is assumed to satisfy the equation [14], [15] 

(16) dn/dt + dn/da=-\n, a>0, t<0. 

Usually À is a function of age only, À = À(a), and represents the probability 
per unit time for cells in the age interval a to a+da to disappear. Accord­
ingly, the function A is divided into two parts, 

(17) À = Àm+Àd, 

where the subscript m stands for mitosis, and the subscript d stands for death, 
The initial condition satisfied by n is 

(18) n(a,0) = / (a) , 

where / (a) is the given age distribution of the population at t = 0. The 
boundary condition satisfied by n is 

(19) n(0, t) = 2 f km{a')n{a\ t) da', 

and represents the birth of two cells of age 0 from each cell of age a' that 
divides. 

An alternative description of cell populations is the maturity-time rep­
resentation [16] which introduces a cell density function n(jut, t), where jx is 
the maturation level or 'physiological age' of the cell. What do we mean by 
the latter term? Two possibilities are the cell volume, or the amounts of DNA 
in a cell. (In a simple bacterial cell such as E. coli, DNA synthesis proceeds in 
a linear fashion from the moment of birth.) The cell density function is 
assumed to satisfy the equation 

(20) dn/dt + d(vn)/dn = -An, jut0< JUL ^ JULI, t > 0. 

Here JUL0 and JLLI are the maturation levels of newborn cells and dividing 
cells, respectively, v is the velocity of maturation, a prescribed function of JUL, 
and k represents the fractional time rate of cell disappearance due to death or 
other causes, but excluding cell division. The density function n(jut, t) satisfies 
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an initial condition similar to (16), 

(21) n(ft,0) = gOi), 

where g(jut) is the given maturation distribution of the population at t=0. The 
birth process is represented by the boundary condition 

(22) n(jLto, t)v(yio) = 2n(juti, t)v(ixi), 

which states that the rate at which cells are born is twice the rate at which cells 
divide. A solution to the two equations can be given (but I will not do so here) 
in which the contribution to the population of successive generations is 
identified. Such a solution is useful for inferring the short time behavior of a 
population. These two mathematical theories lead to contrasting predictions 
concerning growing cell populations. I will illustrate this remark by only one 
example. 

A fundamental property of cell populations, cultured under the ideal 
conditions of identical environment for each member, is that the generation 
time, the interval between cell birth and cell division, is not the same for each 
member of the population. The variability of the generation time appears to 
be an intrinsic reproducible property of a given cell strain. A good illustration 
of this property is provided in Figure 9, which shows the number of cells of a 
given age that divide, where all cells were considered to be of age zero at time 
zero. The cell population consisted of 766 cells of a single celled organism, 
Tetrahymena geleii [17]. 

In a related experiment, 50 cells, all at age zero, were cultured, and the 
population number carefully determined as a function of time. The results of 
this investigation could be used to test which of two contrasting hypotheses 
concerning the birth of these cells was valid. To wit, in the age-time 
formalism, it is assumed that a probabilistic rule governs cell division, so that 
there is no memory in a daughter cell of the parental generation time. An 
alternative hypothesis, in the framework of the maturity-time formalism, is 
that there is a heterogenous distribution of velocities of maturation, with 
some memory, from one generation to the next, of the generation time. The 
extreme form of this hypothesis is that each cell imparts to its daughters the 
same generation time that it possesses, that is to say, there is 'perfect memory' 
of the generation time. 

With the first hypothesis, we can represent this experiment readily by the 
age-time formalism. The generation time distribution shown in Figure 9 
determines the function km(a) in a straightforward manner. (In the quoted 
experiment, \d is zero.) Then, with 

(23) n(a,0) = N08(a) 

where N0 is the total number of cells at age zero, and 8(a) is the Dirac delta 
function, we can determine n(a, t) and hence N(t). 

The second hypothesis is formulated readily in the maturity-time formal­
ism. Thus, we set v = 1/T, a constant, where T is the generation time. Then 
the generation time distribution function shown in Figure 9 can be thought of 
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FIGURE 9. The data of Prescott [17] for the flux of cells of the HS strain of Tetrahymena geleii 
that divide, as a function of time. All cells are of age zero at time zero. The solid line is an 
arbitrary functional form, a gamma distribution, with parameter v determined by the least 
square criterion. The distribution was otherwise constrained by the equations shown in the inset. 
From Rubinow [16]. 

as representing a distribution of subpopulations, each of generation time T, 
i.e., 

(24) n(fx,t) = jnT(iui,t)dT. 

The function nr(fx, t) is assumed to satisfy the maturity-time equation in the 
interval 0<|x^T, subject to the conditions 

(25) nT(n, 0) = Nou(T) 8(JUL), nT(0, t) = 2nr(T, r). 

Here u(T) is the generation time distribution of the initial cell population, 
given by the curve of Figure 9. 

It should be obvious that this second model leads to a different prediction 
for the total population N(t), than does the first model. It is true that JLL could 
be replaced by the age a, and this model could then be considered as a special 
example of the age-time formalism. Conceptually, it is different, because 
there is no contribution to À from mitosis, and I prefer to consider it as a 
maturation-time model. 
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FIGURE 10. The circles represent the data of Prescott [17] for the population growth of an 
initially synchronized group of 50 cells of Tetrahymena geleii HS. A state of asynchronous growth 
appears rapidly because of generation time variability among the constituents of the population. 
The solid curve is the theoretically predicted growth curve for such a population in the age-time 
representation. From Rubinow [16]. 

The contrasting predictions of the 'probabilistic' and 'perfect memory' 
models, with the experimental observations of Prescott superimposed, are 
shown in Figures 10 and 11 respectively. It surprised me greatly that the 
'perfect memory' model gave better agreement with observation. We can 
conclude from this agreement that, over a time span of several generations, 
cells do remember, on average, the generation time of their parents. 

However, such a model cannot be correct for large times because, if it were, 
fast growing cells would ultimately swamp out the more slowly growing cells. 
The generation time distribution function of Figure 9 would then no longer be 
preserved in the 'wild' state. This objection can be resolved by introducing a 

FIGURE 11. The solid line shows the total population as a function of time, that is theoretically 
predicted by the maturity-time representation. The data of Prescott are the same as shown in 
Figure 10. From Rubinow [16]. 
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more complex theory containing three independent variables, age, time, and 
generation time [18]. However, the question as to how the distribution 
function u(T) arises in the first instance, and maintains itself, remains an 
unresolved problem of intracellular dynamics. 
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