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Kahleriennes, Hermann & Cie, Paris, 1958. Read together, these books 
should be enough to explain the Hermitian algebra. This algebra is applied 
together with the Hodge theory to prove some of the pretty classical 
results on Kâhler manifolds. For example the Hodge decomposition theo­
rem, decomposing a cohomology class into a sum of harmonic (p, q) 
forms is proved. The Lefschetz decomposition theorem is also proved, 
and the Hodge-Riemann bilinear relations are discussed. This is done on 
the primitive cohomology of a Kâhler manifold and an example is pro­
duced to show that the result is only valid on the primitive cohomology. 
Unfortunately there is a mistake in the computation on p. 200 which 
invalidates the example. There are a fair number of misprints in this 
chapter, but they generally do not detract from its quality. The reviewer 
found that after one gets past the algebra the rest is well written and 
gives an interesting introduction to the papers of Griffiths on periods of 
integrals on algebraic manifolds. 

The discussion of Chapter VI is directed toward a proof of Kodaira's 
theorem that a Hodge manifold is projective. The proof follows Kodaira's 
original proof. One first proves Kodaira's vanishing theorem, and then 
makes an application of this result to the blow up of the Hodge manifold 
to produce enough sections to give an embedding in complex projective 
space. The proof of the vanishing theorem differs from Kodaira's in that 
Nakano's inequality is the crucial ingredient. The reviewer thoroughly 
enjoyed this chapter and found the exposition to be very clear. There are 
some confusing misprints in the discussion of the canonical bundle but 
it is an easy task to correct them. The reader should compare this chapter 
with the last few pages of the book by Gunning and Rossi, Analytic 

functions of several variables, Prentice-Hall, Englewood Cliffs, N.J., 1965, 
where a discussion of Grauert's proof of this theorem is given. 

The topics treated in the book under review are fundamental. Every 
complex analyst should know (or learn) this basic material, and Wells' 
book is a good reference for these essential results about complex mani­
folds. 

JAMES A. MORROW 

Topics in analytic number theory, by Hans Rademacher, Die Grundlehren 
der math. Wissenschaften, Band 169, Springer-Verlag, Berlin, 1973, 
ix+320pp. 

Topics in analytic number theory by Hans Rademacher covers all the 
classical aspects of a subject which is presently undergoing a revolution. 
According to the editors, Professor Rademacher had been working on this 
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book for 25 years. When he died in 1969 there was a complete manuscript 
available which has now fortunately appeared in book form. This is a 
beautiful book whose value is greatly enhanced by the fact that there is no 
other modern book like it. Although it contains a proof of the prime 
number theorem, the main thrust of the book is number theory related to 
elliptic functions and modular functions. 

The book begins with Bernoulli polynomials and the Euler-MacLaurin 
sum formula. It then moves through Mellin transforms and the Poisson 
summation formula. As an example of these results, let the Riemann zeta 
function be given by 

£(s) = J n-
71=1 

for Re ^>1 and let the theta function #3(i?|r) of Jacobi be given by 
00 

&*(v I T ) = 2 exP(7rin2'r + 27Tim;) 
n=— oo 

which is defined for all complex v and all r with Im T > 0 . The connection 
between these functions is the Mellin transform formula, 

(i) w _ , / , r ( i ) £(s) = \ J 0 " W 0 N -1^"2)~1 du-
as may be seen by integrating term by term. The extension of £0) to the 
entire plane and the functional equation for £(s), 

(2) „ - U - s > / 2 r ^ l z L ^ £(i _ 5) = n-TfyUs) 

follows from the Jacobi transformation equation, 

(3) ^ ( 0 h l / r ) = (-iT)1/2^(0|r) 
(the square root being the principal value). However, conversely (2) 
implies (3) by the theory of Mellin transforms. 

After a short, but interesting chapter on the prime number theorem1 

and its connection with zeros of £(s), the book turns to a detailed study of 
Eisenstein series. Let co1 and co2 be complex numbers whose quotient, 
r=a>2/a>1, has positive imaginary part. Let A be the lattice generated by 
cox and co2 so that A consists of all a>=m1ft>1+/w2ft>2 where mx and m2 are 
integers. Eisenstein series are closely related to the Weierstrass p-function, 

1 There is an error in Rademacher's proof of the prime number theorem. The 
absolute value sign on the right side of the equation immediately following (49.6) on 
p. 100 is not justified; the correct expression is minus what is inside the absolute 
value sign. This necessitates a change in the choice of or — 1 two lines later from 
log"91/| to (2AB)-* log"91/|. With this change, (49.7) and (49.8) follow. 
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M £k UW - W) 0)2J 

where 2 ' means co=0 is not used. This is a doubly periodic function of u 
whose periods are the elements of A. Its Laurent series about w=0 is 

where Gr is the Eisenstein series 

(4) Gr = Gr(<o1,co2)=Jt'
(0~r ( r ^ 3 ) -

(oeA 

This series only converges absolutely for r > 2 and Gr=0 if r is odd since 
if co is in A, so is -co. 

Suppose 

(5) A=(£ ^ G S L ( 2 , Z ) , 

so that A is a matrix of integers of determinant 1. Rademacher calls 
SL(2, Z) the modular group. If œ[, œ2 and r' are given by 

, o>2 ar + b 
a>i CT + d <» GHC:)-

then co'x and co2 generate A also (and Im r'>0) and so 

(7) G2k(œi co2) = G2k(œl9 œ2). 

Further for any X ̂ 0 , 

(8) G2fc(Acol5 Aco2) = tr2kG2k((ol9 co2). 

The properties (7) and (8) make G2k a (homogeneous) modular form of 
dimension — 2k. 

Set 
G2k{r) = G2fc(l, T) = ö>J*G2fc(co1? co2). 

From (7) and (8) we see that for A given by (5), 

(9) G 4^T4) = (CT + d)2 f c G^T)-
\CT + dj 

The property (9) makes G2k(j) an (inhomogeneous) modular form of 
dimension — 2k. Since G2A.(r+l)=G2fc(T), we have a Fourier series ex­
pansion which, with 
(10) x = e2lTiT

9 



666 BOOK REVIEWS [July 

turns out to be 

(1« G-w=(ilr^[-s+I,'-H 
where B2k is the (2A:)th Bernoulli number and ov(")=2d|w dr. 

Because the series in (4) does not converge absolutely for r=2, G2 

has not yet been defined. The book follows Hecke's method of defining G2 

by letting G2{œ1, a>2, s) =2WCA CO~2\CO\~8 which converges absolutely for 
s>0 and then defining 

G2(œl9 (o2) = lim G2(col5 co2, 5). 

The properties (7) and (8) are clear for G2 as well and we get the expansion 
(11) with A:=l except with one extra term: 

(12) G2(r) = -2 • (2nA- & + | <,l(n)x»] _ J E L . 

Thus G2(r) is not an analytic function of r. Nevertheless, the transfor­
mation formula (9) is still valid for k = 1 and if we integrate it with respect 
to T we get the logarithm of the Dedekind ^-function, 

(13) rç(T) = x 1 / 2 4 n (!-*")> 
W = l 

as well as its transformation formula: if A is given by (5) with c>0 , 

(14) log vt^1^) =K + i l o g [ - OCT + d)] + log rj(r), 
\cr + dj 

where K=K(A) is a constant of integration. In particular, if c>0, 

(15) ^ ( £ L T l ) = ^ [ - « c r + d)rn{r). 
\CT + d) 

A special case of great importance is, 

(16) ^ - 1 / T ) = (~ir) 1 /Vr); 

here K=0 as may be seen by setting r=L This case together with the 
fact that Tj(r+l)=:e2lTi/urj(T) (as may be seen from (13)) shows that eK 

in (15) is always a 24th root of unity. 
The book turns next to evaluating Kin (14). For this purpose, the theory 

of Dedekind sums is discussed. This approach is so standard today that it 
has been practically forgotten that the problem of writing eK in closed form 
was solved long ago. Happily, Rademacher includes these results also. 
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Although derived here from properties of Dedekind sums, it should be 
noted that once the correct value of eK is suspected, it may be easily proved 
since it behaves as it should when r is replaced by T + 1 and — 1/T. 

From here, the book turns to a detailed study of theta functions. Trans­
formation formulae, product formulae and connections with the rj-
function are covered. As an example, we see from (3) that #3(0|T) be­
haves in a manner similar to TJ(T) and so it should be no surprise that a 
relation such as 

#3(0|r) = e-^^rjKr + 1)/2]2/T?(T) 

holds; however, thanks to (13), this reflects a remarkable product ex­
pansion for #3(0|T). Jacobi's method of producing elliptic functions from 
theta quotients is briefly mentioned in Chapter 11 but not developed to 
any degree. Although usually not known by the casual student of elliptic 
functions, Jacobi's method is particularly well suited to the construction 
of multiply periodic meromorphic functions of n complex variables. 
The interested reader is referred to Siegel [16, Chapter 5]. In Rademacher's 
book, the relation with elliptic functions is used to derive various iden­
tities, such as formulae for the number of representations of an integer n 
by a sum of k squares with k even, 2=fc=12. 

The book next turns to a study of formal power series. A large number 
of relations involving partitions of various types may be read off from iden­
tities between certain series. Although these identities may be considered as 
being between analytic functions, they may often be derived purely for­
mally without regard to convergence. In these sections, the book covers 
such things as the Jacobi triple product theorem and the Rogers-Ramanu-
jan identities. 

With formal power series out of the way, the book turns to the circle 
method. Let p(ri) be the number of partitions of « as a sum n=n1+n2+• • • 
+nk with l^w1=^ • -^nk and k arbitrary. Then it is easily seen purely 
formally that 

ƒ(*) = 1 + 2 P(n)xn = 1 / fl(l - xn) 

and in fact, this identity is valid for all complex x with \x\ < 1. This brings 
up a natural connection with the ^-function and we have 

ƒ(*) = x^lnir) 

where x is given by (10) as before. 
The transformation formula (15) (with c=k, d=—h) shows that 

ƒ(*)-* oo for T=h\k+iy and y-+0+ so that | x | = 1 is a natural boundary for 
f(x). But the same transformation formula shows exactly how f(x) behaves 
as j>-*0+ and by analyzing this behavior for all hjk, Hardy and Ramanujan 
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found an asymptotic series for p(ri) which, although later found to be 
divergent by Lehmer, actually comes within \ of p(n) for large n when cut 
off at on the order of n1/2 terms. This was explained by Rademacher who 
altered the Hardy-Ramanujan approach sufficiently to obtain a conver­
gent series for p(n) which essentially agrees with the Hardy-Ramanujan 
series for the first n1/2 terms. The book presents Rademacher's con­
vergent series for p(ri). 

What can be done for l/^(r) can be done for other modular forms of 
positive dimension. The book restricts itself to the case of entire modular 
forms (modular forms which are regular in the upper half plane) with a 
finite number of terms in the principal part of the expansion at oo. One 
gets an exact formula for all the coefficients of the form in terms of the 
principal part. In particular, the principal part determines the form 
uniquely but there are easier ways of proving this. Here the book ends. 

The editors are to be congratulated on an excellent job of proofreading. 
Considering the complexity of the subject and notation, the equations as 
written are remarkably trustworthy. [As in all books, there are exceptions; 
for example, the table of Bernoulli numbers on p. 10 contains a counter­
example to the von Staudt-Clausen theorem three lines later; fortunately 
this is because i?14=7/6 and not 6/7 as printed. Also on p. 148, case (ii) of 
the reciprocity formula for Dedekind sums as printed is a repeat of case 
(i).] Nevertheless, the casual quoter should be aware of certain differences 
in terminology and notation between this book and other sources. Mathe­
maticians have a nasty habit of slightly altering the meaning of a word or 
symbol. For a few years, they and their followers say that they are using 
the new meaning, but gradually it becomes accepted and the explanation 
is no longer offered. From that point on, the confusion is total. 

Professor Rademacher wrote his book with the classical words and nota­
tion. When we see in the book that a modular form should be analytic 
for Im r > 0 , we nod our heads in agreement not knowing that in this 
book such a function can have poles. When we see a theta function ex­
panded in a power series in q we are happy, not noticing that for 
Rademacher q=e1TtT and not e2lTtT (which is classically denoted by x) 
as is often the case today. A modular form in this book has no condition 
at oo as it would for modern writers. A modular form of positive dimen­
sion now has positive degree. It also has negative weight and, of course, 
some people's weights are twice those of others. And so it goes. It is 
probably too late to undo the carnage wrought in this subject but perhaps 
it will serve as a warning each time we are tempted to slightly change 
some established terminology for our own temporary convenience. 

Many of the topics treated in the book may be treated in other ways. 
The Dedekind ^-function is a case in point. For instance, there is 
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Kronecker's limit formula (see [17, Chapter 1] for several interesting 
versions), 

= 4TT7 - 47r log{ [ - i (r - f)]1 / 2 |^(r) |2}, 

where y is Euler's constant. The left-hand side of (17) is clearly invariant 
under the modular group and homogeneous in c^ and &>2 with degree 0. 
Thus with T' given by (6), 

l o g { [ - i ( r ' - f ' ) ] 1 / 2 |^(r')|2} = log{ [ - i (T - T)]V* \rj(r)\2}. 

Since Im T'=(Im T)\\CT+d\2, this shows that the real parts of both sides 
of (14) agree (with Re K=0) and (14) follows. 

The proof of (17) is by the same methods as the book's proof of (14) 
and of course the left side of (17) resembles the manner in which G2 was 
defined. But the resemblance is more than just superficial. With G>I=1 , 
O>2=T, an individual term in (17) corresponding to œ=m+nr at £=1 is 

- i ( T - f ) = | / _ J 1 _ \ 
(m + nr)(m + nf) n\m + nr m + nfj 

The derivative of this with respect to Im r is just 1 / '(m+nry+l /(m+nf)2. 
Thus from the point of view of Kronecker's limit formula, it is no surprise 
that (14) can be proved by expanding G2 in a series in x=e2™7 and in­
tegrating. 

There are other proofs of (16) besides the one in the book and the 
Kronecker limit formula proof. Among the more interesting are Siegel's 
proof [18] of (16) and Rademacher's generalization [9] to (14) with K 
being given in terms of Dedekind sums. There is also Chowla's proof 
[3, pp. VI-9 to VI-13] which was later rediscovered and popularized by 
Weil [19]. Dedekind sums are closely connected with the ^-function and 
there are a multitude of proofs of the reciprocity formula and generali­
zations. Among the more useful generalizations is the one of Meyer [7] 
(see also Rademacher [10]) which has applications to generalizations of 
Kronecker's limit formula. There is an excellent monograph on Dedekind 
sums by Rademacher and Grosswald [14] which contains many further 
references. 

The Rogers-Ramanujan identities and generalizations have been a 
continuing source of mathematical papers. Recent papers include the 
survey article by Alder [1], and the memoir by Andrews [2]. On the other 
hand, not much has been done recently with the circle method and coef­
ficients of modular forms. However, there were several results around 
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1940 that were not referenced in the book (not even Rademacher's original 
1937 paper [11] on p(n) is referenced). Most of the results of the last 
sections of the book can be found in the paper by Rademacher and Zuck-
erman [15], which in fact goes somewhat further than the book. These 
results were in turn generalized in two directions by Zuckerman; in one 
direction, one can consider modular forms on subgroups of the modular 
group [20] and in another direction, one can allow modular forms which 
have poles inside the upper half plane [21]. 

There are two further questions that arise from the Rademacher-
Zuckerman paper. Given the proposed principal part of an entire modular 
form with a given multiplier system, they find a formula for all the re­
maining coefficients in its expansion. This determines the form uniquely 
if it exists at all. The question of whether or not there exists such a form 
was considered by Knopp [5]. There is also the problem of modular func­
tions which is the limiting case of forms of dimension 0. Rademacher and 
Zuckerman note that when their method is applied to they-function, they 
get a convergent series analogous to that for p(ri) but this time it is not 
clear that these series converge to the coefficients ofy(r). Rademacher [12] 
proved in 1938 that indeed the circle method does give a convergent in­
finite series for the coefficients of the y-function (this same series had al­
ready been discovered in 1932 by Petersson [8] by a completely different 
method). 

This completes a summary of some of the main subjects in Topics in 
analytic number theory and some further related references. However, 
we have not explained why the theory of modular forms is presently so 
popular. Algebraic geometers have been interested because of the Weil 
conjecture relating certain modular forms of weight 2 (dimension —2) 
on ro(N) (the subgroup of SL(2, Z) given by all A in (5) with c=0 
(mod N)) with elliptic curves. The same conjectural relations between 
certain Artin L-series and modular forms of weight 1 on T0(N) have 
been formulated more recently by Langlands. In both of these instances, 
the relation is provided via the Mellin transform and is a direct analogue 
of the relation between Ç(s) and #3(0|r) in (1) above. Critical to this theory 
is the study of Hecke operators which provide a connection between 
Dirichlet series with Euler products and modular forms which are eigen-
functions of the Hecke operators. There is a marvelous survey article 
on analytic number theory by Rademacher [13] in 1942 which should be 
read by everyone. Among other topics, it provides a brief introduction 
to Hecke operators. 

For the modern developments, the reader is referred to the proceedings 
of the 1972 summer school on modular functions held in Antwerp. Three 
volumes have appeared [6] and a fourth volume of tables should appear 
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someday. Since the Antwerp summer school, Deligne and Serre [4] have 
proved a converse to Langland's result. Any modular form of weight one 
on T0(N) of a certain type must be related via the Mellin transform to an 
entire Artin L-series. Using this result, Tate and his students (unpublished) 
have just found a new modular form of weight one on ro(133) (the first 
form of weight one not known to Hecke) and with it an entire Artin 
L-series which was not known to be entire by the usual group theoretic 
methods. The next few years promise to be very exciting ones in this field. 
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H. M. STARK 

Uniform distribution of sequences, by L. Kuipers and H. Niederreiter, 
Wiley, New York, 1974, xiv+390pp., $24.50 

The theory of uniform distribution started with Hermann WeyPs 
celebrated paper of 1916 titled Ueber die Gleichverteilung von Zahlen 
mod Eins [13]. In its initial stage the theory was deeply rooted in dio-
phantine approximations. Later the subject became a meeting ground for 
number theory, probability theory, functional analysis and topological 
algebra. The vast literature on uniform distribution is therefore widely 
spread. The existing surveys, for example [6], [1], [7], give only a partial 
introduction to the theory. It is a very valuable enrichment of the mathe­
matical literature that a book has been published which is at the same 
time an easily accessible introduction to the subject and an almost com­
plete account of it. 

Writing a book for both beginners and researchers in a field is an almost 
impossible task. The authors show that it was not impossible in this case. 
Firstly, the basic concepts and ideas of the theory are mostly elementary. 
Secondly, by proving only the main results, by inserting references and 
additional results in rather lengthy notes at the end of each section and 
by adding many exercises of various sorts to each section, the authors 
succeed in describing the underlying principles of the theory in such a way 
that readers neither get lost in generalizations nor are drowned in tech­
nicalities. Thirdly, the finish of the book is excellent; the text is well got-up 
and at the end there is an extensive bibliography and further a list of sym­
bols and abbreviations, an author index and a subject index. 

An indication of the contents might explain the subject and the scope of 
the book. Chapter 1 deals with the qualitative aspects of uniform distri­
bution modulo one (u.d. mod 1). A sequence (xn)£=i of r e a l numbers is 
u.d. mod 1 if and only if for every continuous function/: [0, l]-+R 

lim±ff({xn}) = Çf(x)dx, 

where {x}=x— [x] denotes the fractional part of x. This implies that 
(xn)£Li is u-d- m °d 1 if and only if the proportion of the numbers xn in 


