BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 3, May 1975

THE RANGE OF A VECTOR MEASURE

BY IGOR KLUVÁNEK

Communicated by Robert Bartle, January 3, 1975

Let X be a real quasi-complete locally convex topological vector space. Let $K \subset X$ be a weakly compact convex and symmetric set such that $0 \in K$.

Let T be an abstract space and S be a σ -algebra of subsets of T. A vector measure is a σ -additive mapping $m: S \to X$.

We are concerned with the question whether there exists a vector measure $m: S \to X$ such that K coincides with the closed convex hull of the range of m, i.e. $K = \overline{co} m(S) = \overline{co}\{m(E): E \in S\}$. The case $X = R^n$ was surveyed in [1].

THEOREM 1. If T is a space, S a σ -algebra of subsets of T and m: S $\rightarrow X$ a vector measure, then there exists a space T_1 , a σ -algebra S_1 of subsets of T_1 and a vector measure $m_1: S_1 \rightarrow X$ such that

$$\overline{\text{co}} \ m(S) = \overline{\text{co}} \ m_1(S_1) = \left\{ \int_{T_1} f \ dm_1 \colon 0 \le f \le 1, f \text{ is } S_1 \text{-measurable} \right\}$$

$$= \{m_1(E): E \in S_1\} = m_1(S_1).$$

It is worth mentioning that the equality $\overline{\text{co}} m(S) = \{ \int f \, dm : 0 \le f \le 1 \}$ does not hold, in general [3].

LEMMA. If $K = \overline{co} m(S)$ and $y \in K$, then there exists a vector measure $m_1: S \longrightarrow X$ such that $K - y = \overline{co} m_1(S)$.

In view of Theorem 1, the proof of this Lemma is not different from one given by Halmos in the case $X = R^n$ (see [1]). The Lemma permits us to restrict our attention to sets having 0 for the center of symmetry.

Assume that 0 is the center of symmetry of K. For any element $x' \in X'$, the continuous dual of X, let $||x'||_{K} = \sup\{|\langle x', x \rangle|: x \in K\}$.

AMS (MOS) subject classifications (1970). Primary 46G10; Secondary 49E15, 52A05.

Key words and phrases. Vector measure, conical measure, negative-definite function, zonoform.

A function $\phi: X' \longrightarrow R$ is termed negative-definite if, for any collection x'_1, x'_2, \ldots, x'_k of elements in X' and real numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$ such that $\sum_{j=1}^k \alpha_j = 0$, the inequality

$$\sum_{j=1}^k \sum_{l=1}^k \alpha_j \alpha_l \phi(x'_j - x'_l) \le 0$$

holds.

The main result is expressed in

THEOREM 2. Let 0 be the center of symmetry of K. There exists a vector measure $m: S \to X$ such that $K = \overline{co} m(S)$ if and only if the function $x' \to ||x'||_K$, $x' \in X'$, is negative-definite.

According to [2], the proof of Theorem 2 will be accomplished if we show that a set is a closed convex hull of the range of a vector measure if and only if it is a zonoform. This is the content of the last theorem.

We interpret X' as a set of real-valued functions defined on X. Denote by h(X) the linear lattice of functions generated by X'. A nonnegative linear functional on h(X) is termed a conical measure on X. The set of all conical measures on X is denoted by $M^+(X)$. There is a natural (partial) order in $M^+(X)$, viz. for $u, v \in M^+(X)$ we write $u \leq v$ if and only if $u(z') \leq v(z')$, for every $z' \in h(X), z' \geq 0$.

Given $u \in M^+(X)$ and $x \in X$, we write x = r(u) and call x the resultant of u if $\langle x', x \rangle = u(x')$, for every $x' \in X'$.

Let $m: S \to X$ be a vector measure, where S is a σ -algebra of subsets of a set T. Denote by ca(S) the linear lattice of all real-valued σ -additive measures on S. Let $\Phi_m: h(X) \to ca(S)$ be the linear lattice homomorphism such that $\Phi_m(x') = x' \circ m$, for every $x' \in X'$. For every $z' \in h(X)$, let u(z') $= \Phi_m(z')$ (T). Then it can easily be shown that u is a conical measure. Denote it by $u = \Delta(m)$.

THEOREM 3. If $m: S \to X$ is a vector measure, then $u = \Delta(m)$ is a conical measure such that the resultant r(v) exists for every $v \in M^+(X)$ with $v \leq u$ and

$$\overline{co} \ m(S) = \{ r(v) \colon v \in M^+(X), v \leq u \}.$$

For every conical measure u such that r(v) exists for each $v \in M^+(X)$ with $v \leq u$ there exists a space T, a o-algebra S of subsets of T and a vector measure m: $S \rightarrow X$ such that $u = \Delta(m)$.

REFERENCES

1. E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345. MR 41 #921.

2. G. Choquet, *Mesures, coniques, affines et cylindriques, Symposia Mathematica,* vol. II (INDAM, Rome, 1968), Academic Press, London, 1969, pp. 145-182. MR 41 #5921.

3. I. Kluvánek, The range of a vector-valued measure, Math. Systems Theory 7 (1973), 44-54. MR 48 #495.

SCHOOL OF MATHEMATICAL SCIENCES, FLINDERS UNIVERSITY, BEDFORD PARK, SOUTH AUSTRALIA 5042

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTS-BURGH, PENNSYLVANIA 15260