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1. Introduction. In this note we outline an obstruction theory for 
vector bundle monomorphisms over compact manifolds. The basic idea is to 
proceed by induction over the rank of a bundle homomorphism, and to analyze 
arising singularities in order to decide whether the minimum rank can be in­
creased. We carry this program out in a range of dimensions ("metastable") 
where the primary obstruction is the only one and where it gives complete 
existence and classification results. 

Possible applications include planefields, foliations, immersions and some 
aspects of homotopy theory. Here we will deal only with framefïelds. Among 
other things the following interesting fact emerges from the discussion: while 
odd torsion invariants have no importance in many existence questions 
(Theorem 3), they play a significant role in the classification up to homotopy 
or up to certain bordism relations (see Theorem 4; however for concordance 
compare with the classification theorem of §2). 

The obstruction theory presented here was developed from earlier cruder 
(bordism) versions [2], [3]. Subsequently I learned that a stable variant of 
the existence theorem was previously proved by Salomonsen [5] by different 
methods. 

2. An obstruction theory for bundle monomorphisms. We will denote 
the rth bordism group of a space X with coefficients in a virtual vector 
bundle 0 by Slr(X\ 0) (as in [5], except for the sign of 0). Usually this 
group can be interpreted as a (stable) homotopy group of a suitable Thomspace. 

Now let a, j3 be a real vector bundles of dimension q, resp. m, over a 
compact smooth «-manifold M, and let u: a\bM c-> 01 Mf be injective. If 
2(m - q) > n - 2, we can extend u to a homomorphism u: a —• 0 (over 
all of M) which is monomorphic outside of a nondegenerate singularity S 

and such that at every point of S the kernel of u is 1-dimensional (compare 
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[2]). The following data can be extracted from the behavior of u around S: 
(i) a "kernel map" g from S into the projective space bundle P(a) associ­
ated with a; and (ii) a homotopy class of stable isomorphisms g : TS 0 
g*(K ® 7r*03)) —> g*(T(P(a))), where TT: P(OL) —* M denotes the bundle pro­
jection, and X C n*(a) is the canonical line bundle over P(a). The bordism 
class of (S, g, J) defines an invariant 

<o(M, a, 0, n')e î2w_m +^ 1 (P(a); X ® TT*(/J) - X ® 7r*(a) - TT*(7M)). 

It is not hard to obtain the classical (cohomology) primary obstruction for 
our extension problem from co(M, a, ft u). 

EXISTENCE THEOREM. Assume 2(m -q)> n. Then u can be ex-
tended to a monomorphism u: a c_> j3 over all of M iff oo(M, a, ft u) = 0. 

CLASSIFICATION THEOREM. Let 2(m -q)> n + 1 (resp. > n) and 
let a fixed monomorphism u0:ac^P (extending u) be given. Then the 
homotopy (resp. concordance) classes of all such monomorphisms are in bijec-
tive correspondence with the elements of the group 

Sln-m+q(P(ct); X ® TT*03) - X ® n*(a) - rr*(TM)) 

(resp. of a quotient consisting entirely of 2-torsion). 

Here concordance means homotopy through j3 © R. 
EXAMPLE 1 (STIEFEL MANIFOLDS AND STUNTED PROJECTIVE SPACES). 

Put M = Dn,a = Rq and 0 = Rm. Assigning to [u] ^ V - i ^ m , ? ) t h e 

invariant co(Dw, a, ft u), we obtain a "singularity isomorphism" 

°- *n-x<ymtq) — n , ,_ M + , _ 1 (p«- 1 ; (w -<z)X) = i r ^ C P * - 1 ^ * - * - 1 ) 

for 2(/w - #) > 7*. 

3. Invariants for framefields. Throughout this section let M be a 
closed, connected smooth (oriented or nonorientable) «-manifold, and fix 
0 < q < njl. 

Consider the commutative diagram 

*n-i(Vn, q)-^T " >aq^(P^1 xB(S)0(n)'9(l>) 

^ ^ ( ^ x M ; ^ 
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where 0 = X <S> -f - q • X - 7" and <pM = X ® 7M - qX - 7M; 0 , 0 M and 
rM are obtained from o (see Example 1) and obvious inclusions or class­
ifying maps. 

Now define wq(AQ = cj(M9 Rq, TM)eaq_t(P
q-1 x M; 0M) and 

w ^ ^ ^ ^ G ^ j f 1 x B(S)0(n); 0). If u is a « -field with 
finite singularities on M9 then Index (u) G ̂ „„j (Vn q) (in the sense of Thomas) 
gets mapped into coq(M) under 0 M . 

THEOREM 1. M admits a q-field without (resp. with finite) singularities 
iff uq(M) (resp. its class in the cokemel of 0 M ) vanishes. M is bordant 
(in Reinharfs refined bordism group 9D?Q or 12£) to a manifold with a q-
field iff Jq(M) = 0. 

THEOREM 2. Let 0: nn-i(Vnq) —> G be a homomorphism into a 
group G such that for any q-field u with finite singularities on a closed 
n-manifold M, 0(lndex (u)) depends only on M (and not on u). Then 
0 factors through 0 : nn-\(Vnq)—• image (0). Hence 0 (Index (u)) depends 
only on the following invariants of M: the Stiefel-Whitney numbers, the Euler 
number, and, in the oriented case, the Pontrjagin numbers and (if n = 1 (4)) 
the real Kervaire semicharacteristic. 

REMARK. The kernel of 0 can be nontrivial (e.g. for q > 4, n = 3 (8)), 

but it consists always only of 2-torsion. 

THEOREM 3. If M has zero Euler number, then 2q~l • coq(M) = 0. 
If in addition u is a q-field with finite singularities on M, then Index (u) 
lies in the 2-torsion of itn-\(Vnq). 

For related results see work of Becker, Salomonsen [5], a.o. 
Next let v be a (q - l)-field without singularities on M. Define 

X(M, v) e 7T^_1(M
+) = ^lq_xiM\ trivial) to equal the obstruction co(M, R, 7?), 

where T? is a complement of the image of u in TM. Using the obvious 
forgetful maps, define also x(M, v) e nq_t(B(S)0(n)+) and x(M,v)e'nq_l. 
The invariant \(M, v) (resp. x ' W *0) vanishes iff v has a complementary 
vector field (resp. has one after a suitable bordism). 

THEOREM 4. Assume that M admits a (q - l)-field. Then the invar­
iant x(M, •) detects at least as many different (bordism) classes of (q - 1)-
fields on M as there are elements in the kernel of /*: nn_t(S

n~q ) —• 
nn-i(vn,qy

 Note that for n^q(2) the odd torsion of nn_x(S
n-q) a 7^_x 

lies in this kernel. 
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REMARK. Ed Miller has also studied x(M> u) and x(My v). 
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