L₂-REPRESENTATIONS AND A PLANCHEREL-TYPE THEOREM FOR PARABOLIC SUBGROUPS

BY FREDERICK W. KEENE

Communicated by S. S. Chern, July 18, 1974

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. In this note we give a precise condition for the existence of square-integrable representations of the nilpotent subgroup N. In that case we write down a Plancherel formula for the solvable subgroup AN. Full details and complete proofs will appear in a later paper.

These results are in essence part of the author's doctoral dissertation [1]. He would like to thank Professor Joseph A. Wolf for his patient advice and encouragement.

I. L_2 -representations of the nilpotent subgroup N. Let N be a unimodular locally compact group. Let π be an irreducible unitary representation of N on a Hilbert space $H(\pi)$. Then π is square-integrable (or L_2) if there are nonzero vectors x_1 and x_2 in $H(\pi)$ such that

$$\int_{N/Z} |(\pi(s)x_1, x_2)|^2 d\mu(s) < \infty$$

where Z is the center of N and $d\mu(s)$ denotes integration over N/Z with respect to a Haar measure μ on N/Z.

If N is a connected simply connected nilpotent Lie group with Lie algebra \mathfrak{n} , let Z and \mathfrak{z} be the respective centers on N and \mathfrak{n} . Let \mathfrak{n}^* , \mathfrak{z}^* be the respective linear duals of \mathfrak{n} , \mathfrak{z} . Define an alternating bilinear form b_f on \mathfrak{n} by $b_f(x,y)=f([x,y])$ for $f\in\mathfrak{n}^*$ and $[\ ,\]$ the multiplication for \mathfrak{n} . If $f\in\mathfrak{z}$, we can extend f trivially to \mathfrak{n} and define b_f on $\mathfrak{n}/\mathfrak{z}$. Moore and Wolf [3] have shown the following:

PROPOSITION 1. N has L_2 -representations if and only if there exists an $f \in \mathfrak{z}^*$ such that b_f is nondegenerate on $\mathfrak{n}/\mathfrak{z}$.

AMS (MOS) subject classifications (1970). Primary 22D10, 22E25, 22E45, 43A30, 43A65.

Key words and phrases. Parabolic subgroup, semisimple Lie group, Plancherel theorem, nonunimodular group, square-integrable representations, solvable subgroups of type AN.

Copyright © 1975, American Mathematical Society

Then a straightforward argument (see [1]) gives the following condition.

THEOREM 1. If there is a noncentral x in \mathfrak{n} such that $[x, \mathfrak{n}] \cap \mathfrak{z} = \{0\}$, then N has no L_2 -representations.

We note that b_f is a skew-symmetric bilinear form on $\mathfrak{n}/\mathfrak{z}$ and hence we can define the Pfaffian Pf(f) to be the Pfaffian of b_f . Proposition 1 can be restated.

PROPOSITION 1'. N has L_2 -representations if and only if there exists an $f \in \mathfrak{z}^*$ such that $Pf(f) \neq 0$.

Let \mathfrak{g} be a real semisimple Lie algebra with Iwasawa decomposition $\mathfrak{g} = \mathfrak{f} + \mathfrak{a} + \mathfrak{n}$. Let \mathfrak{M} be the centralizer of \mathfrak{a} in \mathfrak{f} . For $\alpha: \mathfrak{a} \longrightarrow \mathbb{R}$, $\alpha \neq 0$ a real linear functional on \mathfrak{a} , let

$$g^{\alpha} = \{x \in g | [a, x] = \alpha(a)x, \text{ for all } a \in \mathfrak{a}\}.$$

If $g^{\alpha} \neq \{0\}$, g^{α} is the a-root space of g for α , and α is an a-root of g. Define $g^{0} = \mathfrak{M} + a$.

Theorem 2. Let α be an α -root. Then g^0 acts irreducibily over R on g^{α} by the adjoint action.

THEOREM 3. Let β , γ , and $\beta + \gamma$ be nonzero \mathfrak{q} -roots with β and γ linearly independent. Then $[\mathfrak{g}^{\beta}, \mathfrak{g}^{\gamma}] = \mathfrak{g}^{\beta+\gamma}$.

There is a positive a-root system $\Sigma_{\mathfrak{a}}^+$ such that $\mathfrak{n}=\Sigma\{\mathfrak{g}^\gamma|\gamma\in\Sigma_{\mathfrak{a}}^+\}$. Let \mathfrak{z} be the center of \mathfrak{n} .

Theorem 4. Let μ be the maximal a-root. Then $g^{\mu} = z$.

This enables us to find a condition for the existence of L_2 -representations of N.

Theorem 5. Let G be a simple Lie group with Iwasawa decomposition G = KAN and corresponding Lie algebra decomposition g = f + a + n. Then N has square-integrable representations if and only if the extended Dynkin diagram of the reduced a-root system is of type A_1 or of type A_2 .

Theorems 1 through 4 can be used to show that the condition on the root system is necessary for the existence of L_2 -representations. Sufficiency

can be shown by explicitly calculating the Pfaffian in these cases. Details of these calculations will appear later.

II. The Plancherel formula in the rank 1 case. Here G is a simple Lie group with Iwasawa decomposition G = KAN and G/K has symmetric space rank 1. Let g = f + a + n be the corresponding Lie algebra decomposition. Let F = R, C, C, or Cay be one of the real division algebras; here C is the quaternions and Cay the real Cayley division algebra. Let C in the usual orthonormal basis. Then C can be realized as C as C in the usual orthonormal basis. Then C can be realized as C in C in C in C or C in C or C in C is the nilpotent part of so C in C in C in C in C in C is given by making C in C in C in C and, for C in C is given by making C in C in C in C and, for C in C is given by making C in C

$$[x, y] = \operatorname{Im}\left(\sum_{i=1}^{n} x_{i}\overline{y}_{i}\right) \text{ in } \operatorname{Im}(F).$$

Then, in particular, $[n_n(F), n_n(F)] \subset Im(F) = \delta(n)$.

Using an idea due to C. C. Moore [2], we are able to find a "Plancherel Theorem" for AN (or, more accurately, for NA) in this case.

THEOREM 6. Let $\mathfrak{n}=\mathfrak{n}_n(F)$ for F=R, C, Q, or Cay be given as above. Let $\mathfrak{a}=R$ be the (vector) abelian Lie algebra. Let N, A be the connected Lie groups of \mathfrak{n} , \mathfrak{a} respectively, and NA their semidirect product and hence the Lie algebra of $\mathfrak{n}+\mathfrak{a}$. Let $\dim \mathfrak{z}(\mathfrak{n})=k$. Then, for $\gamma\in C_c^\infty(NA)$,

$$\gamma(1_{NA}) = \int_{S^{k-1}} \operatorname{trace} \, \pi_{\lambda}(D\gamma) \, d\sigma(\lambda)$$

where $d\sigma(\lambda)$ is Lebesgue measure on the unit sphere in $\mathfrak{z}(\mathfrak{n})^*$, π_{λ} is in the unitary dual of NA parametrized by λ , and D is an operator on $C_c^{\infty}(\mathbb{R}^k)$ given by

$$D = (i/2\pi)(\Delta)^{1/2} \quad \text{for } \mathbf{F} = \mathbf{R},$$

$$D = (i/2\pi)^{q}(\Delta)^{q/2} \quad \text{for } \mathbf{F} = \mathbf{C}, \mathbf{Q}, \text{ or } Cay,$$

where q = (n(k+1) + 2k)/2 and Δ is the Laplacian operator on $C_c^{\infty}(\mathbb{R}^k)$ and \mathbb{R}^k is the center of N.

BIBLIOGRAPHY

- 1. F. W. Keene, Square-integrable representations of Iwasawa subgroups of a semisimple Lie group, Doctoral Dissertation, University of California, Berkeley, Calif., 1974.
- 2. C. C. Moore, Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, pp. 3-44.
- 3. C. C. Moore and J. A. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445-462.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics, University of Miami, Coral Gables, Florida 33124