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In this note, we announce several approximation theorems on Rieman­
nian manifolds as well as some of their consequences. First recall the relevant 
définitions. Let M be a Riemannian manifold. A function ƒ: M —• R is 
called convex iff its restriction to each geodesic is a convex function of one 
variable. A function ƒ on M is called strictly convex iff given any compact 
K CM, there exists an e > 0 such that for every geodesic r(t) parame­
terized by arc-length and defined on (s,s) with r(0) GAT, AT(S)) + AT(S)) 
- 2/(r(0)) > es2 for all s C (0, e). A function ƒ is subharmonic iff it is 
everywhere a subsolution of the Dirichlet problem, i.e. if B is a sufficiently 
small geodesic ball and u is a harmonic function such that u — f on the 
boundary of B, then u > f everywhere in B. If ƒ is C2, ƒ is subharmon­
ic iff A/ > 0, where A = the Riemannian metric Laplacian. For a C2ff we 
define ƒ to be strictly subharmonic iff Af> 0. If ƒ is merely continuous, 
we say ƒ is strictly subharmonic iff at each x €E M, there exists a C2 

strictly subharmonic f0 near x such that ƒ - f0 is subharmonic near x. 
Suppose M is a complex manifold, not necessarily equipped with a 

Riemannian metric. A real-valued C2 function ƒ on M is called strictly 
plurisubharmonic iff d'à"f is a positive definite Hermitian form at each point. 
For a continuous function ƒ, we say ƒ is strictly plurisubharmonic iff 
at each point x EM, one can find a C2 strictly plurisubharmonic function 
f0 near x such that f-f0 is plurisubharmonic near x. 

In the following, S will denote any one of the following subsets of the 
ring of real-valued functions on M: (A) convex functions, (B) continuous 
subharmonic functions, (C) continuous plurisubharmonic functions on a com­
plex manifold, (D) continuous plurisubharmonic functions on a complex 
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manifold which admits a continuous strictly plurisubharmonic function. S°° 
will then denote the C°° members of S. We also use S + to denote the 
subset of S consisting of strictly convex, or strictly subharmonic, or strictly 
plurisubharmonic functions, as the case may be. Naturally, we define: S+ = 

THEOREM 1. S~ is dense in S + in the C° fine topology. Moreover, 
if ƒ £ S+ is Lipschitzian, then the approximating functions in S+ can all be 
chosen to be Lipschitzian with the same Lipschitz constant. 

The first statement of the theorem in the case S = (C) is a previously 
known result given in [9] ; the authors are indebted to Y.-T. Siu for bringing 
this paper to their attention. 

A function ƒ: M —• R is called an exhaustion function iff it is contin­
uous and each sublevel set Mc s |JC GM: f(x) <c\ is compact. If ƒ is an 
exhaustion function, then any continuous function that uniformly approximates 
ƒ on M is itself an exhaustion function. Thus: 

COROLLARY 1.1. If M admits an exhaustion function belonging to S+, 
then it also admits an exhaustion function belonging to S+. 

Basing our arguments on earlier works of Gromoll and Meyer [7] and 
Cheeger and Gromoll [1], we have observed in [6] that a complete, noncompact 
Riemannian manifold of positive curvature admits a strictly convex exhaustion 
function. Hence: 

COROLLARY 1.2. A complete noncompact Riemannian manifold of 
positive curvature admits a C°° strictly convex exhaustion function. 

By using Corollary 1.2, certain results in Gromoll and Meyer [7] can be gen­
eralized and, at the same time, given much simpler proofs. For example: 

THEOREM 2. Let M be a Riemannian manifold which admits a strictly 
convex (continuous) exhaustion function. Then M is diffeomorphic to euclid-
ean space and the exponential map at each point of M is a proper map. 

The next theorem also follows easily from Theorem 1. 

THEOREM 3. Let M be a complete noncompact Riemannian manifold 
whose curvature is positive outside a compact set. Then: (i) M isisotopicto 
the interior of a compact manifold with boundary, (ii) If M is a Kahler man­
ifold, then M is obtained from a Stein space by blowing up a finite number of 
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points, (iii) If M is a Kahler manifold and if, in addition, the curvature is 
assumed to be everywhere nonnegative, then M is a Stein manifold. 

Part (ii) has been announced in [5] without indication of the method 
of proof, (iii) is an improvement of the main theorem of the same paper [5]. 

Returning now to the general approximation question for S itself, we 
have: 

THEOREM 4. Let S be (B) or (D) of the previously defined subsets 
of continuous functions. Then S°° is dense in S in the compact open to­
pology. Moreover, if f G S is Lipschitzian, then an approximating sequence 
to f in S°° may be chosen to be Lipschitzian with uniformly bounded 
Lipschitz constants. Let S = (C), let e: M—>R* be any positive con­
tinuous function and S~ be the set of C°° functions f: M —• R such 
that the eigenvalues (relative to a Hermitian metric) of the Levi form of f 
are > -e at each point. Then Cl S~ D S (closure in the C° fine to­
pology). Similarly if S = (A) (or (B)) and S~ = the set of C°° func­
tions having the eigenvalues of their second covariant differential > -e 
(respectively, having Laplacian > -e) then CI S™ 3 S. 

The proofs of Theorems 1 and 4 are based on a general procedure for 
passing from approximations near compact sets (cf. [4] ) to global approxima­
tions (cf. [2] ). 

Combining Theorem 4 with the technique in [6], we can prove 

THEOREM 5. Let M be a Riemannian manifold which admits an ex­
haustion function which is, outside a compact set, Lipschitzian and subhar-
monic. Then M has infinite volume. 

COROLLARY 5.1. Let M be either: (i) complete, noncompact, with 
positive curvature or (ii) complete simply connected, with nonpositive cur­
vature everywhere. Then every properly immersed minimal submanifold of 
M has infinite volume. If in (i), one only assumes nonnegative curvature 
outside a compact set, then a noncompact properly immersed minimal sub-
manifold again has infinite volume. 

The first part of this corollary generalizes the well-known fact that such 
minimal submanifolds are noncompact (folklore and Greene and Wu [3,1] ). 

Finally, we observe that Theorem 1 leads to a particularly simple proof 
of the Gauss-Bonnet theorem for complete noncompact Riemannian manifolds 
of dimension < 4, whose curvature is positive outside a compact set. Com-
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pared with the known result of Poor [8] and Walter [10], this result is at once 
more restrictive (we require positivity rather than nonnegativity of the curva­
ture) and more general (the curvature in our theorem may be negative in a 
compact set). However, if we are willing to forego simplicity in the proof, then 
we can actually prove the following general theorem. 

THEOREM 6. Let M be a complete noncompact Riemannian manifold 
of dimension < 4 whose curvature is nonnegative outside a compact set. Then 
its total curvature does not exceed its Euler characteristic. 
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