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ABSTRACT. The author proves a very general result from which 
it is possible to show that a regular function satisfying a differential 
inequality of a certain type is necessarily a Caratheodory function. 
This result has applications in the theory of univalent functions. 

Let 8P denote the class of Caratheodory functions; that is, functions 
p(z)=l+p1z+p2z

2+- - • regular in the unit disc A, and for which 
Re/?(z)>0. 

In a recent paper [2] it was shown that if p(z)=l+p1z+p2z
2+- • • is 

regular in A, with p(z)^0 in A, and if a is a real number, then for z e A 

(1) Re[/>(z) + x(zp'(z)lp(z))] > 0 => Re/7(z) > 0; 
thatis,/?(z)e^. 

In this note we replace the differential inequality in (1) by a much more 
general condition which will still imply that p(z) is a Caratheodory 
function. 

DEFINITION 1. Let W=W!+M2/ and v=v1+v2i, and let Y be the set of 
functions y)(u9 v) satisfying: 

(a) y)(u, v) is continuous in a domain D of Cx C; 
(b) ( l , 0 ) e D and Re y(l, 0)>0; 
(c) Re y)(u2i, vJ^O when (u2i, vx) e D and v^ — 1/2(1 +ui). 
We denote by O the subset of Y which satisfies (a), (b) and the following 

condition: , 
(c') Re y>(u2i, vx)^0 when (u2i, vj e D and i>i^0. 
EXAMPLES. It is easy to check that each of the following functions are 

inT. 
xp^u, V)=U+OLVIU, a real, with D=[C— {0}]xC 
y,z(u, v)=u2+v with D=CxC. 
y>z(u9 V)=U+OLV, a^O, with D=CxC. 
n(u, v)=u-vlu2 with D= [C-{0}] X C. 
y)5(u, v)=-ln(i-v) with D=Cx{(vl9 u2)h<i}-
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Note that v>i> V*2> V>z a nd ^4 a r e a l s o *n ̂ > but tp5 $ O. The set O is thus a 
proper subset of Y. Though some generality is lost in considering the class 
<I> as opposed to considering T, the former is much easier to work with 
algebraically. 

DEFINITION 2. Let p(z)=l+p1z+p2z
2-\ be regular in A and let 

y e T with corresponding domain D. We denote by &(y>) those functions 
p(z) that satisfy: 

(i) (p(z)9 zp\z)) e D, and 
(ii) Rey>(p(z)9zp'(z))>0, 

when z e A. 
Note that 0*(yj) is not empty, since for all tp e Y it is true thatp(z)=1 + 

pxz e 0*(yj) for px sufficiently small (depending on ip). It appears further 
that most ipeW provide a large number of other functions in 0*(ip). 

Our main result is the following theorem. 

THEOREM 1. For any y>eY, 0>(ip)c0>. 

In other words the Theorem states that if \p e T , with corresponding 
domain D9 and if (p, zp') e D then 

(2) Re y>(p(z), zp'(z)) >0=> Rep(z) > 0. 

Since O c T , we immediately have the following Corollary. 

COROLLARY. For any y)S<S>9 ^(xp)^ SP. 

The proof of the Theorem is involved and will not be presented here. 
However an independent proof of the Corollary follows. 

Let p(z) e &(\p)9 and assume there exists a point z0=r0 exp(/0o) e A 
such that Re/?(z)^0 for |z|^r0, and Re/?(z0)=0. Thus p(z0)=ai9 where a 
is a real number. We now show that z0p'(z0)=k9 where fcr^O. Since the 
result is true if p'(z0)=09 we need only consider the case p'(z0)7*0. The 
curve p(roe

t0) is tangent to the imaginary axis at z0, and so we have 
argz0/?'(z0)=7r; that is z0p'(z0)=k9 where k<0. Hence at z0 we have 
Rey>(p9zp')=Rey)(ai,k) with a real and k^O. But this implies that 
Re tp(p9 zp')^0 at z=z09 which is a contradiction of the fact that 
p(z)e&(y)). Hence Re/?(z)>0 for zeA. 

REMARKS. If we apply the Theorem (or the Corollary) to the example 
yxiu, v)9 we obtain condition (1). Applying it to rp29 tpz and \p± we obtain 
respectively: 

(3) Re[/?2(z) + zp\z)} > 0 => Re/7(z) > 0; 

(4) Re[/?(z) + <xzp'(z)] > 0, with a ^ 0 => Re/?(z) > 0, 

and 

(5) p{z) 5* 0 and Re[/>(z) - zp'(z)\p\z)\ > 0 => Re/?(z) > 0. 
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We see that for different ipeW we can obtain different differential 
conditions for p(z) to be a Carathéodory function. By appropriately 
choosing y e T w e can define many new subclasses of 0* and can prove 
many properties of the class &. 

The theorem has many applications in the theory of univalent functions. 
If we set p(z)=zf'(z)lf(z) in Theorem 1, we see from (2) that each y) e^F 
generates a subclass of starlike functions. In particular y>i(«, v)=*u+ 
OLV/U generates the class of alpha-convex functions [2]. Similarly by setting 
/>(z)=eVW0O> where \y\<\, or p(z)=f'{z)\g'{z), where g(z) is 
convex, and using slightly modified forms of Definitions 1 and 2 and 
Theorem 1, we can generate many new subclasses of spiral-like and 
close-to-convex functions, respectively. These results, the proof of Theorem 
1, and other applications will appear in a forthcoming paper [1]. 

REFERENCES 

1. Z. Lewandowski, S. Miller and E. Zlotkiewicz, Generating functions for classes 
of univalent functions, (to appear). 

2. S. S. Miller, P. Mocanu and M. O. Reade, All alpha-convex functions are starlike, 
Rev. Roumaine Math. Pures Appl. 17 (1972), 1395-1397. 

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, 
NEW YORK 14420 


