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I. Introduction. Statistical mechanics is the science of explaining, 
predicting and understanding the gross, macroscopic attributes of matter 
(which may be taken to mean mechanical systems with essentially an in­
finite number of degrees of freedom) in terms of the elementary dynamical 
laws governing its atomic constituents. The problems that arise are suf­
ficiently complex and intriguing, but at the same time sufficiently well 
posed, that the subject is nowadays as much a part of mathematics as of 
physics. The fields of information theory and ergodic theory had their 
genesis in statistical mechanical modes of thought and are now well 
established in the mathematics literature; there will be more to come. 

Ludwig Boltzmann, who died in 1906, was one of the principal founders 
of statistical mechanics, and his monument in Vienna contains the follow­
ing eloquent testimonial to his scientific creativity: 

(1) S = k log W. 

Surely, this hypothesis of Boltzmann [1] is one of the most important 
and daring in statistical mechanics, for it relates S, the macroscopic 
entropy of a system, to W, the number of microscopic states of the sys­
tem which have the same, given macroscopic properties. The number k 
is a universal constant, called Boltzmann's constant, and, for our pur­
poses, we can consider it to be 1. 

In these lectures we shall explore some of the abstract properties of 
entropy, after first giving a precise formulation of it, and will include some 
recent results (with M. B. Ruskai) which extend formerly known facts 
about the strong subadditivity of entropy from the domain of classical 
mechanics to the quantum-mechanical domain. The presentation here will 
be sketchy and the reader is referred to the original papers [3], [4], [5] 
for more details. 

An expanded version of an invited address delivered before the M.I.T. meeting of 
the Society on October 27,1973 by invitation of the Committee to Select Hour Speakers 
for Eastern Sectional Meetings; received by the editors January 7, 1974. 

AMS (MOS) subject classifications (1970). Primary 80A10, 81A81, 82A05, 82A15, 
94A15; Secondary 15A45, 28A35, 28A65, 47A99. 

Key words and phrases. Entropy, strong subadditivity, convexity, density matrix. 
1 Work supported by National Science Foundation Grant GP 31674 X. 

Copyright © American Mathematical Society 1975 

l 



2 E. H. LIEB [January 

II. Definitions of entropy. First we shall define abstractly what we 
mean by entropy in the classical discrete case. Let p denote a probability 
measure on an atomic probability space whose points are labelled by 
/ G Jf. Hence />(/) e [0, 1] denotes the probability that event i occurs and 
2£Li />(0=1- The entropy of p is defined by 

(2) S(p) = - J T p(i)ln P(i) 

with 0 In 0 = 0 . As each term in the sum is nonpositive, S is well defined, 
although it may be +oo. Obviously, S measures the extent to which p is 
"chaotic" or "spread out": If p is concentrated on one point (complete 
certainty) then S=0; If p=l/W on W points and 0 otherwise, then 
5=In W. This last observation establishes the connection between (2) 
and (1). Clearly there are other functions besides />—•—/> In p which 
have the same qualitative property, but —p In p alone has an important 
additivity property (additivity of entropy for independent systems) which 
we shall explain later (cf. equation (16)). 

To establish contact with information theory we can define 

(3) ƒ(ƒ,) = -S(p) 

to be the information content of p (Shannon). The idea behind (3) is 
the following: Think of the index i e JV* as denoting possible states of a 
system which is in some definite state j unknown to us. Interpret p(i) 
as an assertion of a priori belief that the system is in the state i. Then, 
after we measure the system and find it to be in the state j , the new proba­
bility function is p(i)=ôitj, i e J^ (Kroenecker delta) and S(p)=I(p)=0. 
Thus, our knowledge (information) has increased by S(p) and the entropy 
of the system has decreased by S(p). For this reason, it is sometimes said 
that information is negative entropy. While such an assertion is true by 
definition (3), it is a matter of dispute whether it has any true physical 
import. 

A generalization of (2) is the classical continuous case in which the 
underlying measure space, £2, is not atomic and is equipped with a positive 
measure d/j,(x) (not necessarily finite) and />(x)=0 is a probability density. 
Thus ƒ p(x) d/Li(x)=l and 

(4) S(p) = - ƒ K*)ln P(x) df*(x). 

A typical example in statistical mechanics is an N particle system with a 
Hamiltonian function H(p, q), p G jR3iV, q e R2N, and dfi is Lebesgue 
measure on some subset Q, of R3NxRZN. Then 

p(p,^) = Z-1exp[~ i8H(p,g)], 
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where 

(5) Z = | exp[-j8H(p, q)] d^(p9 q), 

and /?=(fcr)_1 with T being the temperature. 
Our third definition is the quantum-mechanical case. Instead of a measure 

space, one has a separable Hilbert space ^ and p is a positive trace-class 
operator on 34? (i.e. p is selfadjoint and (x, px)^0, Vx e #F) with Tr />=1, 
where Tr is the trace. Such an operator p is called a density matrix. Then 

(6) «(/>)= - T r p In/>. 

In a basis in which p is diagonal, (6) is seen to be identical to (2); the 
difference will manifest itself when we try to compare the entropies of 
two different p's which do not commute with each other. In other words, 
equation (6) is the noncommutative version of equation (2). The typical 
statistical mechanics example is as in (5), except that H becomes a self-
adjoint operator on J^=L2(RSN) and 

(7) p = Z - V ^ , Z = Tr e~pH. 

We remark in passing that entropy also plays a role in ergodic theory; 
given a measure preserving transformation T on a probability space Ü, 
Kolmogorov and Sinai [2] have been able to define the entropy of T by 
making use of (2) in such a way that the entropy is invariant under iso­
morphism. There exists an analogous notion of a measure preserving 
transformation in a Hilbert space setting, but an unsolved problem is to 
define the analogue of the Kolmogorov-Sinai entropy. In other words, it 
is not clear how to give an unambiguous definition of the density matrix to 
use in (6). We shall say no more about ergodic theory in this lecture. 

III. Properties of entropy (one space). We turn now to a study of 
some properties of S(p) that can be deduced from the definitions (2), (4) 
and (6). These properties are summarized in Table 1. The proofs we give 
will not only be sketchy but they will also assume that J f is finite dimen­
sional in the quantum case. The proofs for the infinite dimensional case 
can be found in [4] and [5]. When we say that some property is false in 
some particular case, we mean, of course, that the property does not hold 
generally and we do not mean that the property never holds. 

Property A. S(p)^0 (positivity of entropy). This property is easily seen 
to be true in the classical discrete and the quantum cases but is false in the 
classical continuous case. The difficulty cannot be mitigated by adding a 
positive constant to the right side of (4) because S(p) has no lower bound 
in the continuous case. Indeed, in the example (5) one sees that if H is 
nonconstant and has a unique minimum then as /?->oo, S—•—-oo. Thus, 
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if one believes, as Boltzmann did, that the entropy as we have defined it is 
the same (apart from an additive constant, possibly) as the physical 
entropy of a mechanical system, and if the latter is required to be positive, 
then classical mechanics cannot be valid at very low temperatures. Quan­
tum mechanics must eventually be invoked. 

Property B. S(p) is concave in p. By this is meant that if />=a/>'+ 
( 1 - a ) / , O ^ a ^ l , and p', / ^ 0 , then 

(8) S(p) ^ *S(p') + (1 - a)S0>"). 

The physical interpretation is obvious : if two probability ensembles are 
mixed (which is not to be confused with the notion of mixing two systems, 
to be defined later) the entropy increases. This essential property of entropy 
is true in all three cases. In the classical cases the proof uses Jensen's 
inequality (i.e. ƒ eA+B d^$ eA dp exp{J BeA dfi^ e* dp) for A and B 
real-valued functions). The analogous inequality in the Hubert space case 
is the Peierls-Bogoliubov inequality: 

(9) Tr eA+B ^ (Tr ^)exp{Tr J5^/Tr eA} 

for A and B selfadjoint. To apply (9) assume that p and p" are strictly 
positive and write 

A = -S(p) + xS(p') + (1 - *)S(p") = ocA' + (1 - a)A", 

(10) A' = Tr />'{ln p - In />'}, 

A" = Tr / { I n p - In />"}. 

Then, using (9) with A=ln p', B=ln p—ln p' 

eA' ^ Tr exp{ln p' + In p - In p') = Tr p = 1. 

Thus, A ' ^ 0 . Likewise, A"^0. Q.E.D. The case of />', p" semidefinite 
can be handled by a continuity argument, and the classical cases can be 
proved in the same way using Jensen's inequality. 

IV. Properties of entropy (two spaces). The remaining properties 
refer to the "mixture of different systems". In the classical cases this means 
that the total probability space, ii12, is taken to be the Cartesian product 
of two smaller spaces 

(11) ii1 2 = t i 1 x ii2 

and the product measure is assumed. Given a positive function />12 on 
Q12 one can define a positive function px on Q1 by 

(12) Pl(x) = />12(x, y) d[*2(y). 

Similarly, one defines p2 on Q2. 
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In the quantum case, the Hubert space ^ f 12 is taken to be the tensor 
product of two smaller spaces : 

(13) JT12 = ^Ti ® tf2. 

Given a positive, trace-class operator p12 on Jf12, one defines p± to be a 
positive, trace class operator on Jif1 by the partial trace operation: 

(14) />! = Tr2 Pl2. 

This means that 
00 

(15) (x, Ply) = 2 (* ® e„ Pi2(.V ® e,)) 

for all * , ƒ e j f j , and where {e,}£Li is an orthonormal basis for 3f2. 
It is easy to prove that the right side of (15) is basis independent. In all 
cases, note that if p12 is normalized, then so is px. 

Thus, for a mixed system one has three p's to consider, pl9 p2 and p12 

on three spaces. Corresponding to these there are three entropies: Sx = 
S(pi)> S2=S(p2) and S12=S(p12). The two spaces, fix and Q2 (or 3#p

1 

and «?f 2), can have two different physical interpretations (or both at once) : 
(i) iij and Q2 refer to two different sets of degrees of freedom of one 

physical system (e.g. the/? and q variables in (5), in which case Q^R™ 
andQ2<=fl3iV); 

(ii) Qx and i i2 refer to two different physical systems (e.g. the molecules 
of two different gases) which, under the product, are being thought of as 
one system. 

One says that Qx and £i2 (resp. 3tfx and J^2) are independent if p12(x9 j ) = 
Pi(x)p2(y) (resp. jOi2=/>i<8>/>2). In this case it is easy to check the additivity 
property 

(16) S12 = Sx + S2. 

Property C. S12^*S,
1 (monotonicity of entropy). This appealing statement 

is true only in the classical discrete case. It cannot be true generally in the 
classical continuous case because one could have fi2 and Q2 independent, 
so that (16) holds, and at the same time one could have -S2<0 because of 
the failure of property A. In the quantum case we note that S(p)=0 
if p is a pure state, i.e. p is a one-dimensional orthogonal projection on 
34?. (In the classical discrete case, the analogous statement is that p is 
concentrated on one point.) Conversely, S(p)=0 implies that p is a pure 
state. Take p12 to be pure, in which case px will not, in general, be pure in 
the quantum case. Then S1 2=0 and 5 1 >0. The proof of C for the classical 
discrete case is as follows: Denote the function p12 on JfxJf by />(/,/) 
and />! on Jf by p(i), i,j e Jf. />(0=2£=i pi}J)- Define 

A = Sx - S12 = J p(U j)(ln p(ij) - In p(i)). 
i,3=l 
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Assume that />(/)> 0, Vi. Then, by Jensen's inequality, 

e*<yf*hJl<i, 

since p(i)^.p(i,j), i,jeJ^. The general case follows by a continuity 
argument. Q.E.D. 

The failure of C to hold presents a serious, but not insoluble problem 
for physics. It would mean, for example, that, under the second inter­
pretation (ii) of p12, the entropy of our planet could increase without limit 
while the entropy of the universe remains zero. Property E below, which 
holds in all cases, is partial compensation for the failure of C, but it is 
not enough. Instead, the resolution of the dilemma comes from further 
hypotheses about the kinds of p12s that actually occur in physical 
systems. In particular there are theorems that state that (in all three cases) 
when systems 1 and 2 are "large enough" then (16) is approximately 
true. In quantum mechanics 5 2 >0, and so the situation is saved—at 
least on the macroscopic level. More precisely, for macroscopic systems, 
Sl9 S2, and *S12 are proportional to the volumes of the respective systems, 
whereas the error in (16), S12—(Sx+S^), is proportional to the area of 
the surface separating systems 1 and 2. 

Property D. S12^S±+£2 (subadditivity of entropy). This is one of the 
crucial facts about entropy and, fortunately, holds in all three cases. 
The proof is similar to that of property B: if A=512—5X—S2 then, from 
(9) ,e A ^Tr 1 2 P l ®p 2 =l . 

We now interject two technical lemmas that are relevant to the quantum 
case. 

LEMMA L Let p12 be a pure state on J^12. Then the spectra of px and 
p2 on J f ! and 3rif2, including multiplicity, are identical except, possibly, 
for the point zero. In particular, S1=S2> 

The proof of Lemma 1 is easy and can be found in [6], among other 
places. 

LEMMA 2. Given a positive, trace class operator px on a separable Hilbert 
space J f i, there exist a separable Hilbert space J^2 and a pure state 
p12 on Jfussjfx®•#% such that p1=Tr2 p12. 

Again, the easy proof can be found in [6]. 
Property E. S12^\S1—S2\ (triangle inequality). We call this the triangle 

inequality because, when it is combined with D one has 

(17) St + 52 ^ S12 ^ \S, - S,\. 

However, E is not true in the classical continuous case (because S12 can 
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be negative), but it is true in the other cases. To prove E in the quantum 
case we use Lemma 2 to find a Hubert space J f 3 and a pure state p123 on 
e^f7!®^^®^3 such that pi2=Tr3 p123, and we define p3=Tr1 2 p12Z 

(resp. p23=Tr1 p123) on Jt3 (resp. ^ f 2 0 J f 3 ) . But then, by Lemma 1, 
S12==Sz=S(pz), S1=S23=S(p2Z) and, by property D, 

(18) - S i + 512 + S2 = - S 2 3 + Sz + S2 ^ 0 Q.E.D. 

Finally, while there is no natural analogue of Lemmas 1 and 2 in the 
classical discrete case, property E is nevertheless true there as well. This 
is so because S12^S1—S2 holds in the special case that p12 commutes with 
p±<S)I2 and 7i®p2; but this special case is precisely the classical discrete 
case, provided one thinks of the function p12 on / x / in the obvious 
way as a diagonal matrix on /j®/^ There exists, in fact, a direct proof of 
property E for the classical discrete case similar to the proof of property 
C, but the foregoing detour through the quantum domain is more amusing. 

V. Properties of entropy (three spaces). Up to this point we have 
been concerned with the product of two spaces. Now the plot thickens; 
we consider three spaces and the property of strong subadditivity and its 
variants. Given p123 on fij x Q2 X t i3 (or J ^ ® . ^ 2<g) Jf 8 ) we can, by taking 
partial traces, define S123—S(pl23), S12=S(p12)9 S1=S(p1), etc. We list 
three properties that are closely related (note that G refers to only two 
spaces). 

Property F. S12Z+S2^S12+S23 (strong subadditivity of entropy). 
Property G. S12—S1 is concave in p12. 
Property H. S1+S2^Slz+Sn. 
The significance of properties F, G and H will be discussed after Table 

1 is completed. At this point we shall merely indicate the proofs of those 
three properties. Consider G first. In order to simplify the notation, we 
shall use Tr to mean 2 ° r ƒ in the classical cases. If we use the Jensen 
or Peierls-Bogoliubov inequality as in (10), we end up trying to prove that 

ƒ = a Tr12 exp(X + In p[) + (1 - a)Tr12 exp(K + In p'{) ^ 1, 

with # = l n p12—In px and with an abuse of notation in which pt stands 
for />!®/2. In the two classical cases /= l since p 1 =ap i+ ( l— a)pi- For the 
quantum case we need a lemma [4] : 

LEMMA 3. La K be any fixed self adjoint nxn matrix. Then the map 
from the positive nxn matrices to the reals defined by A->Tv exp(^+ln A) 
is concave. 

The proof [4] of Lemma 3 is lengthy, but we can use Lemma 3 to 
obtain 

/ ^ T r 1 2 e x p ( * + In P l ) = 1. 
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Next we consider property H. Since plz is linear in pnz, property G 
implies that S13—Sx is concave in p123. Likewise, S23—S2 is concave in 
p12Z. Thus A=(S13—Sx)+(S2Z—S2) is concave in p123. In the classical 
discrete and quantum cases, A will have its minimum on extremal states, 
which are pure states. In that case (see Lemma 1) S1Z=S2 and 5,

23=51. 
In the classical continuous case this argument fails and, in fact, H is 
false because one could take />i23=/>i2/>3 with S3<0. 

Finally, we consider property F. By applying the Jensen or Peierls-
Bogoliubov inequality, we have to prove that 

A = Tr123 exp(ln p^2 + In p2Z - In p2) ^ 1. 

Clearly, A=l in the two classical cases. In the quantum case an involved 
argument using Lemma 3 (see [5]) shows that A_^l. However, there is 
another way to prove F in the quantum case and this method displays 
the close connection between properties F and H. As in the proof of 
property E, introduce a fourth Hubert space «2f4 and p12U pure on 
«^i23®«^4 such that Tr4 pi234==Pi23- Then S12Z+S2—S12—S23=S4+ 
S2—S12—Su (by Lemma 1) and this is nonpositive by property H. 

REMARK. For the quantum case we have proved G=>H=>F. It is also 
true, however, that F=>G as may be seen by a special choice of p12Z (see 
[5]). 

To complete Table 1 we have to discuss properties I, J, K and L which, 
as Table 1 shows, are always false and therefore uninteresting. They are 
mentioned for two reasons : The first is that it occasionally occurs to some­
one that these properties may be true. Secondly, we shall need to know 
their falsity in discussing properties F" and G" of Table 3. 

With the definition A=S12Z—S12—S1Z—S2Z+S1+S2+SZ, property I 
states that A^O, while property J states that A^O. We shall prove that 
these statements are false in the classical discrete case and, a fortiori, 
they are also false in the other two cases. Take />i23(/,y, k)=p12(i,j)ôjfk9 

whence S123=S12, S1Z=S12 and 523=52=53. Then A=—512+5!+52 and 
this can be positive since p12 is arbitrary. To demonstrate the falsity of 
property J an explicit example is required. Let p123(l, 1,2)=J, 
p123(l,2, l )= i , Pi23(2, 1, 1)=4 and p12s(i,j9k)^0 otherwise for i,j9 

kejV. Then 5123=512=513=523=ln 3, 51=52=53=ln 3 - f In 2 and 
A=ln3-21n2<0. 

Property K (resp. L) states that A=512—Si.—52 is concave (resp. 
convex). For K consider p12 of the form Px2,(i,j)=pi{i)àitj. Then A= 
—5X=— Sipx), but, as />! is arbitrary, one can have —S(pi)—S(p'{)> 
-ISdpx+ip'l) (property B). For L, take p'u(i,j)=ïôitlôjtl+iôit2ôjt2 

and pu(i9j)=iai2ojtl+loitlojt29 so that A(pi2)=A(pi2)=—ln2 and 
A(i/>i2+K2)=0. 
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TABLE 1 

A. 
B. 
C. 
D. 
E. 
F, 
G. 
H. 
I. 

J. 

K. 
L. 

S(p) £ 0 
S(p) concave in p 

slt ^ s, 
*^12 = " 1 "1" " 2 

S» ^ \SX - 5, | 
"123 T" "2 Si Ola T "23 
Su — S1 concave in plz 

"1 T "2 = "13 + 023 

"123 i "1 "T" "2 T "3 
= "12 T "13 + O23 

"123 T "1 + "2 T "3 

= "12 T "13 T "23 
Sit — Si — S2 concave in p12 

Su — Si — S2 convex in p12 

Classical 
discrete 

T 
T 
T 
T 
T 
T 
T 
T 

F 

F 
F 
F 

Classical 
continuous 

F 
T 
F 
T 
F 
T 
T 
F 

F 

F 
F 
F 

Quantum 

T 
T 
F 
T 
T 
T 
T 
T 

F 

F 
F 
F 

TABLE 1. Properties of entropy and their truth (T) or falsity (F) in 
the three cases. 

Thus, Table 1 is complete and we now take up the interpretation of 
strong subadditivity. There are two. The first is simple but the second 
is involved and will lead us to the construction of two more tables. 

VI. First interpretation of strong subadditivity. Property F can be 
viewed as a generalization of property D, i.e. subadditivity. For concrete-
nesswe use the measure space language, but the same idea is applicable 
in the Hubert space setting. Suppose that to each Lebesgue measurable 
subset, A, of Rz we associate a probability space O(A), which can be 
thought of physically as the set of configurations of a "gas of particles" 
contained in A. We assume that when A! and A2 are disjoint Q(A1uA2)= 
fl(A1)xü(A2). Given a probability density pA on each Q(A) we then 
have an entropy S(pA)=S(A) for each A. Property D states that 

(19) S(A1 U A2) ^ S(AX) + 5(A2) 

when Aj and A2 are disjoint. 
What if At and A2 are not disjoint? Define A3=A1nA2, A4=A1—A3 

and A5=A2—A3. Then, property F states that S^^+S^S^+S^y or 

(20) S(At u A2) + 5(A, O A2) ^ S(AJ + 5(A2), 

which is an appropriate generalization of (19). 
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VIL Second interpretation of strong subadditivity: relative entropy. 
Given the product of two spaces #? x®^2 (or Qi x £22) and a density 
matrix p12 on Jf12 one can define 

S(2 | 1) = S12 - S, 

to be "the conditional entropy of 2 relative to 1". The term is slightly 
misleading since £(211) depends upon p12 and not merely on p2, but this 
is a minor flaw. The real question is whether or not the word entropy 
is justified in describing S(2|l), which means that we have to check the 
whole list of properties A to H for S(2|l). In order to do so, strong sub­
additivity will play a crucial role. It might appear at first glance that since 
property G involves three spaces and »S(2|l) involves two spaces, we shall 
need a new theorem about four spaces and this will lead us into an endless 
hierarchy of more and more complex inequalities. This is not so. It turns 
out, remarkably enough, that we already have all the information we need. 

There is, however, one complication. Properties C to H refer to two 
or more spaces and hence we can let either Jf2 or J(fp

1 be such a product. 
Thus, considering both possibilities we shall end up with two tables 
(Table 2 and Table 3 respectively). It will be seen that *S(2|l) merits the 
appellation entropy in terms of expanding #F2 (Table 2) fairly well, but 
that in terms of expanding J f 1 it fares poorly. In fact, in Table 3 there are 
two properties, C" and H", that are not only false but their opposites are 

TABLE 2 

Classical Classical 
discrete continuous Quantum 

A'. 
B'. 
C'. 
D'. 
E'. 

F'. 

G'. 

H'. 

5(2 I 
5(2 1 
5(23 
5(23 
5(23 

> 

1 ) ^ 0 
1) concave in plt 

1 1) ^ 5'(2 
1) < 5(2 

1) 
1) + 5(3 | 1) 

I 1 ) |5(2 1 1) - 5(3 1 1)| 
5(234 | 1) + 5(3 | 1) 

< 5(23 | 1) + 5(34 | 1) 
5(23 | 1) - 5(2 | 1) concave 

in p123 

5(2 | 1) + 5(3 1 1) 
< 5(24 | 1) + 5(34 J 1) 

T 
T 
T 
T 

T 

T 

T 

T 

F 
T 
F 
T 

F 

T 

T 

F 

F 
T 
F 
T 

F 

T 

T 

F 

TABLE 2. Properties of relative entropy, S(2\l)=S12—Sl9 with respect 
to the second space and their truth (T) or falsity (F). 
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true. These are indicated by <^C" and ^H". The most important of these 
is ~C", namely for three spaces 

(21) 5(2 | 13) ^ 5(2 | 1). 

The interpretation of inequality (21), and indeed of 5(211) itself is 
obvious. 5(2|l) is the incremental information gained by measuring the 
total system (12) as against merely measuring the subsystem (1). Inequality 
(21) states that this incremental information gain is less if one knows 
more to start with (namely (13) as against (1)). 

~c*. 
D". 
E". 

F". 

~F". 

G". 

s^G . 

~H". 

Tf 

5(2 | 13) ^ 5(2 | 1) 
5(2 | 13) ^ 5(2 11) + 5(2 | 3) 
5(2 | 13) 

£ |5(2 | 1) - 5(2 | 3)| 
5(2 | 134) + 5(2 | 1) 

^ 5(2 | 13) + 5(2 | 14) 
5(2 | 134) + 5(2 | 1) 

> 5(2 | 13) + 5(2 | 14) 
5(2 | 13) - 5(2 | 1) 

concave in p123 
5(2 | 13) - 5(2 | 1) 

convex in pim 
5(2 | 1) + 5(2 | 3) 

> 5(2 | 14) + 5(2 | 34) 

kBLE 3 

Classical 
discrete 

T 
T 

F 

F 

F 

F 

F 

T 

Classical 
continuous 

T 
F 

F 

F 

F 

F 

F 

T 

Quantum 

T 
T 

F 

F 

F 

F 

F 

T 

TABLE 3. Properties of relative entropy, 5(2|l)=512—Sl9 with respect 
to the first space and their truth (T) or falsity (F). The designation ~ 
indicates that a property is opposite to that in Table 1. 

Having set forth Tables 2 and 3 we shall conclude with brief indications 
of how the entries in the two tables can be checked. 

Table 2. 
Properties A' and C' follow from property C. 
Property B' follows from property G. 
Property D' follows from property F. 
Property E' is true in the classical discrete case because if we define 

A s - S ^ - S ^ + S x a + S i then 

^•222 pi(i)Pi2(i>j) 
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But Pis(i'»&)^Pi(Q and Pi2z(i,j,k)^p12(i,j), so eA^l. In the quantum 
case, let p123 be a pure state so that S12=SZ and A= — S^+S^Ss. This 
can be positive (property D) since />13 is arbitrary. In the classical con­
tinuous case take pi2z=P1P2P3 and Sz<0. 

Property F' follows by applying property F to the three spaces J^29 

J^^J^s and JT4 in place of Jf?l9 Jf2 and JT3. 
Property G' follows from property G. 
Property H' is true in the classical discrete case since S124j^S12 and 

^134=^13- It is false in the classical continuous case because one can take 
/)i234==/°i/02/°3/>4 and SA<0. In the quantum case, take pi2M=Pu®p2®Pz 
so that S12+S1S—S12^—S1U=2(S1—S14) and this can be positive (prop­
erty C) since />14 is arbitrary. 

Table 3. 
Properties A" and B" (not shown) are respectively identical to A' 

and B'. 
Property ~ C " follows from property F. 
Property D" is that A=(S128—S18—Sia+Sx)—(S88--Sa)2i0- This is 

true in the classical discrete case by properties F and C. In the classical 
continuous case it is false because one could take Pi23=/>i/>2/>3 with 
*S2<0. In the quantum case, use Lemmas 1 and 2: With p1234 pure on 

A = i(S1 + S4 - S1Z - SM) + i(Si + SZ- Su - S**) 
+i(Sz + St- S1A - S18) ^ 0 

by property H. 
Property E" is that à=(S123-S13-S12+S1)+(S2Z-Sz)^:0. In the clas­

sical continuous case this is false for the same reason that property D" 
is false. In the quantum case it is false because »S(2|13) can be negative 
(see A'). In the classical discrete case take />i23(/,y, k)=p12(i,j)ôjk. Then 
^23=^3=^2 and ^123=^13=^12» so A= —S^+Si and this can be negative 
since p12 is arbitrary. 

Property F" and its contrary, ~ F " , are both false in all three cases. 
Take />i234=/>i®P234 so that A=5(2|l34)+5(2|l)-5(2|l3)-5'(2|l4)= 
S2M—SM—S2Z—S24+S2+S3+S4' As p234 is arbitrary, A can be positive 
or negative (by properties I and J of Table 1). 

Property G" is that As^g-S l z —S 1 2 +S 1 is a concave function of 
/>123. In the classical discrete case take p12Z(i,j9 k)=p12{i,j)6jk so that 
^123=^13 and A=—512+5!. If property G" were true, —S12+S1 would 
have to be a concave function of />12, which is arbitrary, but the contrary 
is true (property G). To demonstrate the falsity of ~ G " in the classical 
discrete case, let />i23=/>i/>23 so that A=5,

23—S2—Sz would have to be 
convex in />23. This is false by property L. Since properties G" and ^ G " 
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are false in the classical discrete case they are a fortiori false in the other 
two cases as well. 

Our final task is to prove property ~H". This is easy to do since 

S(2 | 1) + 5(2 | 3) - S(2 | 14) - S(2 | 34) 
= ("~5124 + *>12 + 0 1 4 — Oi) + ( — 0234 + O34 + O23 "— *>3), 

and this is positive by property F. 
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