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In this paper we announce results in the study of the wave equation 

(1) 4>tt = A0 

subject to what we call acoustic boundary conditions. The physical model 
giving rise to these conditions is that of a gas undergoing small irrotational 
perturbations from rest in a domain G with smooth compact boundary. We 
assume that each point of the surface bG acts like a spring in response to 
the excess pressure in the gas, and that there is no transverse tension between 
neighboring points of bG, i.e., the "springs" are independent of each other. 
(Such a surface is called locally reacting; see [2, pp. 259-264].) 

If the boundary has mass per unit area m, resistivity d, and spring 
constant k (all nonnegative functions on bG), then the displacement 
8(x, i) into the domain of a point x G bG at time t must satisfy the 
spring equation 

(2) mbtt + dbt + kb = ~ excess pressure = po0 f , 

where p 0 is the unperturbed density of the gas and <j)(x, t) is the velocity 
potential. Continuity of the normal velocity between the gas and the boun­
dary implies the relation St(x, t) = ~i>n(t, x - nd(x, t))9 x G bG, where 
n is the outward normal. We consider here the linearized approximation 
obtained by assuming Ô is small (this is consistent with the linearization 
leading to the wave equation). Thus we assume 

(3) 6t(pc, t) = -0„(x, r). 

Note that if d and k are zero, (2) and (3) imply m<j)nt + po0 f = 0; thus 
the excess pressure satisfies the Robin boundary condition. 

If 0 and 8 are smooth solutions of ( l)-(3), and 0 has compact 
support in space for each t if G is unbounded, it is easy to see that the energy form 
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(4) E(t) = fG (p01 V^l2 + ̂ A + fdG (m<?n + *S2) 

is nonincreasing in t, and if d is zero it is constant. The four terms repre­
sent the kinetic and potential energies of the acoustic wave and the displace­
ment of the boundary. We are thus led to consider solutions as four-vectors 
(0, 0f, 0„, 5) in the Hubert space H which is the closure of C£(G) + 
C£(G) + C°°(bG) 4- C°°(3G) in the norm corresponding to (4). An operator 
A can be defined on H so that, for smooth 0 and S, (l)-(3) are equiva­
lent to u(t) G D(A) and ut - Au, where u = (0, <j>v 0W, ô). A is closed, 
densely defined, and maximal dissipative; therefore by a theorem of Lumer 
and Phillips it generates a contraction semigroup which provides a solution of 
the initial value problem. 

For a bounded domain it might be expected, by analogy with the usual 
boundary conditions for the wave equation, that A has discrete spectrum 
consisting of eigenvalues; however, this is not so. The following results describe 
the spectrum of A in the case where m, k9 and d are constant on bG 
and k > 0, m > 0. oox and co2 are the roots of moo2 4- dco 4- k. 

THEOREM 1. (mA2 + dA + k)(l -A)~3 is compact. As a conse­
quence, the resolvent of A is meromorphic on C - {col9 co2}, and its poles 
are eigenvalues of A. 

THEOREM 2. cox and co2 are essential singularities of the resolvent 
of A. 

THEOREM 3. If d = 0, there exists a sequence of eigenvalues of A 
converging to co1 (or co2). 

If dG is a sphere, the conclusion of Theorem 3 holds even if d > 0. 
Whether it holds for arbitrary boundary with d > 0 is not known. For ex­
terior domains there are results similar to Theorems 1 and 2 for the "outgoing" 
resolvent (see [1]). 

Finally we have considered scattering theory for this model in an exter­
ior domain with the wave equation in free space as the unperturbed system. 
If m, k9 and d are variable but d is bounded below by a positive constant, 
the methods of Lax and Phillips can be applied to obtain an energy decay re­
sult like Theorem 9.5 of [1]. It follows from the abstract theory that wave 
operators and a scattering operator exist. We expect that in the case d = 0 
the existence of these operators can be shown by a different method. 
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