A CONJECTURE OF M. GOLOMB ON OPTIMAL AND NEARLY-OPTIMAL LINEAR APPROXIMATION

BY WOLFGANG DAHMEN¹ AND ERNST GORLICH

Communicated by M. Golomb, May 28, 1974

In 1964, M. Golomb, in his survey paper on optimal and nearly-optimal linear approximation, presented at the General Motors Conference [3], called attention to an unsolved problem. It is the purpose of this note to solve this problem and at the same time to give a certain extension of the Haršiladze-Lozinskii theorem.

The authors are indebted to Professor P. L. Butzer for many helpful discussions and for a critical reading of the manuscript.

Let $C_{2\pi}$ be the space of continuous 2π -periodic functions with Čebyšev norm, Π_n the class of trigonometric polynomials of degree $\leq n$, and $E_n[f] = \inf\{\|f-p\|; p \in \Pi_n\}$ the error of best approximation of an $f \in C_{2\pi}$ by elements of Π_n for an $n \in \mathbf{P} = \{0, 1, 2, \cdots\}$. A sequence $\{U_n\}_{n \in \mathbf{P}}$ of bounded linear operators on $C_{2\pi}$ into $C_{2\pi}$ is called asymptotically optimal [3] for a given subset $Y \subset C_{2\pi}$ if

(1)
$$\sup_{f \in Y} \|f - U_n f\| \leq M_Y \sup_{f \in Y} E_n [f] \qquad (n \in \mathbb{P}),$$

 M_Y being some constant. $\{U_n\}$ is called *optimal* for Y if (1) is satisfied with $M_Y=1$.

In particular, Y will be taken to be one of the spaces C_0^r , $r \in \mathbf{P}$ or A_0^{α} , $\alpha > 0$, where C_0^r consists of those $f \in C_{2\pi}$ whose rth derivative is continuous and satisfies $||f^{(r)}|| \le 1$, and A_0^{α} is the class of functions f(z) of a complex variable z = x + iy which are 2π -periodic in x, real for y = 0, analytic in the open strip $|y| < \alpha$, continuous in $|y| \le \alpha$, and satisfy

AMS (MOS) subject classifications (1970). Primary 42A08; Secondary 41A25, 41A35, 41A50.

Key words and phrases. Best trigonometric approximation, linear polynomial operators, optimal rate of approximation, Haršiladze-Lozinskii theorem.

¹Supported by a DFG research grant (Bu 166/21) which is gratefully acknowledged.

 $\sup_{|y|\leqslant\alpha,|x|\leqslant\pi}|\mathrm{Re}\,f(z)|\leqslant1. \text{ By the Jackson and Bernstein theorems, a sequence }\{U_n\} \text{ of bounded linear operators is asymptotically optimal for come }C_0^r \text{ [some }A_0^\alpha] \text{ iff } \|f-U_nf\|=\mathcal{O}(n^{-r}) \text{ [}\mathcal{O}(e^{-\alpha n})\text{], }n\to\infty, \text{ for all }f\in C_0^r \text{ [}f\in A_0^\alpha]\text{. Moreover, since }\sup\{E_n[f];f\in C_0^r\}=\mu_r(n+1)^{-r} \text{ for all }n\in P, \text{ where }\mu_r \text{ denote the Favard-Achieser-Kreĭn constants }(r\in P), \text{ a sequence }\{U_n\} \text{ is optimal for some } C_0^r \text{ iff } \|f-U_nf\|\leqslant\mu_r(n+1)^{-r} \text{ for all }f\in C_0^r, n\in P.$

Golomb's conjecture [3] consists of the following two statements.

- (A) There does not exist a sequence $\{U_n\}$ of bounded linear polynomial (i.e. $U_n(C_{2\pi}) \subset \Pi_n$ for all $n \in P$) operators which is asymptotically optimal for all the classes C_0^r , $r \in P$, and at the same time for all the classes A_0^{α} , $\alpha > 0$.
- (B) There does not exist a sequence of bounded linear polynomial operators which is optimal for all classes C_0^r , $r \in \mathbf{P}$.

In case (A), this was motivated by the fact that the Fourier partial sums S_n are asymptotically optimal for each A_0^{α} , $\alpha > 0$, but not for any C_0^r , $r \in \mathbf{P}$, whereas the de La Vallée Poussin sums $V_n = (n - \lfloor n/2 \rfloor + 1)^{-1} \cdot \sum_{k=\lfloor n/2 \rfloor}^n S_k$ are asymptotically optimal for each C_0^r , $r \in \mathbf{P}$, but not for any A_0^{α} , $\alpha > 0$. Concerning (B), for each class C_0^r there exists an optimal sequence of convolution type operators, but it depends on r and is unique at least among convolutions.

To prove (A) assume the contrary to be valid. If $\{U_n\}$ is the sequence in question, define a sequence $\{\overline{U}_n\}$ of bounded linear polynomial operators by

(2)
$$\overline{U}_n f = \frac{1}{2\pi} \int_{-\pi}^{\pi} T_{-t} U_n T_t f \, dt, \quad T_t f(x) = f(x+t),$$

according to Marcinkiewicz' device [5]. Then the \overline{U}_n are convolutions and they are asymptotically optimal for all $C_0^r A_0^\alpha$, $r \in P$, $\alpha > 0$ as well. Thus the following two theorems may be applied in order to derive a contradiction.

Theorem 1. If $\{U_n\}$ is a sequence of bounded linear polynomial operators on $C_{2\pi}$ which is asymptotically optimal for some A_0^{α} , $\alpha > 0$, then $\limsup_{n \to \infty} \|U_n\| = +\infty$.

Theorem 2. If $\{U_n\}$ is a sequence of bounded linear polynomial convolution operators on $C_{2\pi}$ which is asymptotically optimal for some C_0^r , $r \in \mathbb{P}$, then $\|U_n\| = \mathcal{O}(1)$, $n \to \infty$.

The proof of Theorem 1 proceeds via (2) and makes use of a weak version of an inequality of Hardy-Littlewood [4] and Sidon [8] (to be found e.g. in Nikol'skii [6, p. 262]). Theorem 2 is proved by an application of Bernstein's inequality to $(U_n - V_n)f$.

For the proof of (B) assume that $\{U_n\}$ satisfies $\|f - U_n f\| \le \mu_r (n+1)^{-r}$ for all $f \in C_0^r$, $n, r \in \mathbf{P}$. Then the following Lemma furnishes a contradiction to the fact that the μ_r are bounded uniformly in r.

LEMMA. If $\{U_n\}$ is a sequence of bounded linear polynomial operators on $C_{2\pi}$ such that for each $r\in \mathbf{P}$

(3)
$$\sup_{f \in C_0^r} \|f - U_n f\| \le M_r (n+1)^{-r} \quad (f \in C_0^r, n \in P),$$

then $\limsup_{r\to\infty} M_r = +\infty$.

This is a consequence of (2) and of the inequality mentioned above (see [8]).

In this context let us mention the familiar Haršiladze-Lozinskii theorem (see e.g. [2, pp. 212, 233]) which asserts that there does not exist a sequence $\{U_n\}$ of bounded linear polynomial operators satisfying simultaneously

- (a) $U_n(U_n f) = U_n f$ for each $n \in \mathbb{P}, f \in C_{2\pi}$, and
- (b) $||f U_n f|| \to 0$ as $n \to \infty$ for each $f \in C_{2\pi}$.

Extensions of this result have been given e.g. by Berman [1] and Sapogov [7]. As a consequence of the above, another extension is obtained on replacing the projection condition (a) by (a') or (a") below.

- (a') $\{U_n\}$ is asymptotically optimal for some A_0^{α} , $\alpha > 0$.
- (a") $\{U_n\}$ satisfies (3) for each $r \in \mathbb{P}$, and $M_r = \mathcal{O}(1), r \to \infty$. Details will appear elsewhere.

REFERENCES

- 1. D. L. Berman, On the impossibility of constructing a linear polynomial operator furnishing an approximation of the order of best approximation, Dokl. Akad. Nauk SSSR 120 (1958), 1175-1177. (Russian) MR 20 #5387.
- 2. E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966. MR 36 #5568;
- 3. M. Golomb, Optimal and nearly-optimal linear approximations, Approximation of Functions (ed. by H. L. Garabedian), Elsevier, Amsterdam, 1965, pp. 83-100. MR 34 #1767.
- 4. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier-constants, Math. Ann. 97 (1927), 158-208.

- 5. J. Marcinkiewicz, Quelques remarques sur l'interpolation, Acta Litt. Acad. Sci. Szeged 8 (1937), 127-130.
- 6. S. M. Nikol'skiĭ, On linear methods of summation of Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 259-278. (Russian) MR 10, 247.
- 7. N. A. Sapogov, Norms of linear polynomial operators, Dokl. Akad. Nauk SSSR 143 (1962), 1286-1288 = Soviet Math. Dokl. 3 (1962), 602-604. MR 25 #381b.
 - 8. S. Sidon, Über Fourier-Koeffizienten, J. London Math. Soc. 13 (1938), 181-183.

LEHRSTUHL A FÜR MATHEMATIK, TECHNOLOGICAL UNIVERSITY, 51 AACHEN, FEDERAL REPUBLIC OF GERMANY