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In 1964, M. Golomb, in his survey paper on optimal and nearly-optimal lin-
ear approximation, presented at the General Motors Conference [3], called atten-
tion to an unsolved problem. It is the purpose of this note to solve this problem
and at the same time to give a certain extension of the HarSiladze-Lozinskil theo-
rem.

The authors are indebted to Professor P. L. Butzer for many helpful dis-
cussions and for a critical reading of the manuscript.

Let C,, be the space of continuous 27-periodic functions with Cebysev
norm, IT,, the class of trigonometric polynomials of degree <n,and E, [f] =
inf{ If — pl;p €11} the error of best approximation of an f € C,, by ele-
ments of I, foran n €P ={0, 1,2, +--}. Asequence {U,},cp of boun-
ded linear operators on C,, into C,, is called asymptotically optimal [3]
for a given subset Y C C,, if

1) sup If = U, fISMysup E, [f] (n€EP),
rey fey
My being some constant. {U,} is called optimal for Y if (1) is satisfied
with My = 1.
In particular, ¥ will be taken to be one of the spaces CJ,r €P or

0> @ >0, where CJ consists of those f €& C,, whose rth derivative is con-
tinuous and satisfies ()< 1,and Ag is the class of functions f(z) of a
complex variable z = x + iy which are 27-periodic in x, real for y = 0,
analytic in the open strip |y|< a, continuous in |yl < a, and satisfy
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SUD|y<q, x| <n IREf(2)I <1. By the Jackson and Bernstein theorems, a se-
quence {U,} of bounded linear operators is asymptotically optimal for come Cj
[some Ag] iff If — U, fll=0@"") [0€™*")],n—> oo, forall fE€C]
[f€ A3 1. Moreover, since sup {E,[f];f € CF} =m,(n+ 1)~" forall n€
P, where u, denote the Favard-Achieser-Krein constants (r € P), a sequence
{U,} is optimal for some Cg iff If — U, fl<w, @+ 1)~" forall f€Cy,
n€P.

Golomb’s conjecture [3] consists of the following two statements.

(A) There does not exist a sequence {U,} of bounded linear poly-
nomial (i.e. U,(C,,) C I, forall n €P) operators which is asymptotically
optimal for all the classes Cj,r € P, and at the same time for all the classes

6, a>0.

(B) There does not exist a sequence of bounded linear polynomial oper-
ators which is optimal for all classes C§, r € P.

In case (A), this was motivated by the fact that the Fourier partial sums
S, are asymptotically optimal for each Ag, a > 0, but not for any Cy ,

r € P, whereas the de La Vallée Poussin sums V, = (n — [n/2] + 1)~ -
Zi—[n/2) Sk are asymptotically optimal for each Cg,r € P, but not for any

o> a> 0. Concerning (B), for each class Cjj there exists an optimal se-
quence of convolution type operators, but it depends on r and is unique at
least among convolutions.

To prove (A) assume the contrary to be valid. If {U,} is the sequence
in question, define a sequence {(7"} of bounded linear polynomial operators

by
@ U, f=5 " T UTfd, T =16+,

according to Marcinkiewicz’ device [5]. Then the Un are convolutions and they
are asymptotically optimal for all Cg, A5, 7 €P,a>0 aswell. Thus the
following two theorems may be applied in order to derive a contradiction.

TueoReM 1. If {U,} is a sequence of bounded linear polynomial
operators on C,, which is asymptotically optimal for some Ag, a> 0, then
lim sup,,_, o, 1U, Il = + oo,

TueoreM 2. If {U,} is a sequence of bounded linear polynomial con-
volution operators on C,, which is asymptotically optimal for some Co»
r€P, then U, Il = 0(1),n — oo



1974] OPTIMAL AND NEARLY-OPTIMAL LINEAR APPROXIMATION 1201

The proof of Theorem 1 proceeds via (2) and makes use of a weak ver-
sion of an inequality of Hardy-Littlewood [4] and Sidon [8] (to be found
e.g. in Nikol'skii [6, p. 262]). Theorem 2 is proved by an application of Bern-
stein’s inequality to (U, — V,)f.

For the proof of (B) assume that {U,} satisfies I|f— U, fIl <
p(n + 1)77 forall f€ Cg,n, r €P. Then the following Lemma furnishes a
contradiction to the fact that the u, are bounded uniformly in r.

Lemma. If {U,} is a sequence of bounded linear polynomial operators
on C,. such that for each r €P

?3) sup lf-U, fISM,@m+1)"" (fECH,nEP),
recy

then lim sup, ., M, = + .

This is a consequence of (2) and of the inequality mentioned above (see
[8D.

In this context let us mention the familiar HarSiladze-Lozinskii theorem
(see e.g. [2, pp. 212, 233]) which asserts that there does not exist a sequence
{U,} of bounded linear polynomial operators satisfying simultaneously

(@) U, U,f)=U,f foreach n€P,f€C,,, and

®) lf-U,fl—0 as n—> o foreach fEC,,.

Extensions of this result have been given e.g. by Berman [1] and Sapogov
[7]1. As a consequence of the above, another extension is obtained on replac-
ing the projection condition (a) by (a") or (a") below.

(@) {U,} is asymptotically optimal for some A§, o> 0.

(") {U,} satisfies (3) for each » €P,and M, = 0(1),r —> .

Details will appear elsewhere.
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