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1. Introduction. For a Dedekind domain, R, the orthogonal and 
symplectic representations of a finite group, 7r, on finitely-generated projec­
tive inner-product modules over R admit a Witt equivalence relation, and 
the resulting equivalence classes form a commutative algebra, llJ*(R, 7r), over 
the Witt ring of R. This concept has received considerable attention recently 
[2], [3] , [4] . Our interest is motivated by the fact that W*(Z, n) is so very 
specifically related to the bordism classification of smooth, orientation pre­
serving actions of n on closed even-dimensional manifolds. We shall discuss 

(1.1) THEOREM. If, for p an odd prime, IT is an abelian p-group then 
W%(Z, n) contains no torsion. 

A corollary of (1.1) is that for an action (n, M2k) of such a group on 
a closed oriented manifold, the Atiyah-Singer-Segal G-signature theorem [1] 
determines the integral Witt class of (TT9 H*(M; Z)/tor) uniquely. The pres­
ent techniques may also be applied to determine W#(Z, IT) for an abelian 
2-group, however torsion is present always. Thus for an orientation preserving 
action (IT, M2k) of an abelian 2-group, a torsion valued invariant, as well as 
the multisignature, must be computed. 

By rough analogy with [5, IV, (3.3)] there is 

(1.2) LEMMA. For any p-group 

W2(Z, 71) ^ W2(Z(l/p), 7T), 

and there is a split short exact sequence 

0 - * W0(Z, IT) - + W0(Z(l/p), 77) — W(Zp) - > 0. 
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We use the subscripts 0 and 2 respectively to denote orthogonal and 

symplectic representations. 

2. Cyclic p-groups. From this point we restrict our attention to odd 
primes. For n > 0 we denote by Q(X) the pn + * -cyclotomic extension of 
the rationals. In the ring of algebraic integers, Z(X), there is the multiplica­
tive subset, S, generated by the rational prime, p, and S~lZ(X) = D C 
Q(X) is a Dedekind domain invariant under complex conjugation. We may 
thus speak of the Witt ring of Hermitian inner-product modules over 7), 
H0(D), and by introducing skew-Hermitian inner-products there is H2(P) and 
hence an algebra, HJP). 

(2.1) LEMMA. For n > 0 there is an additive isomorphism 

wjz(i/P), zpH+1) = w,(z(i/p), zp„) e Hjp). 

Very briefly, we consider a (Z n + 1, V) where F is an inner-product 
module over Z(l/p) and choose a generator T G Z n+1. With T = T? , 

we introduce into F a selfadjoint projection operator 

Z Ü = ( Ü + r(u) + • • • + 7p'1(v)y/p. 

This yields an orthogonal decomposition F = 7 0 71 into the image, 7, of 
2 and the kernel, 71. On 7 the subgroup generated by r acts trivially, 
so we may replace Z n + 1 by the quotient group Z n. Now D is the 
quotient of the group ring Z(l/p)(Z w + 1 ) by the principal ideal which 
1 + T + • • • + r p _ 1 generates. In this fashion 71 becomes a projective 
D-module. The (skew-)Hermitian inner-product on 71 is [v, w] = 

2, (u, 7*w)X'. 

At this point standard algebraic number theory intervenes in proving 

(2.2) LEMMA. The Hermitian Witt ring H0(D) has no torsion. 

Denoting by ö ( ^ + X - 1 ) the subfield of real elements in ö (^ ) , we 
may paraphrase the discussion in [5, IV, §4] to show that v G Q(X + X - 1 ) 
can, up to mulitplication by a Hermitian square, be realized as the discriminant 
of a Hermitian inner-product module over D with even rank if and only if 
LL~ - vD for some fractional 7)-ideal L C Ô(X). The key lemma then is 

(2.3) LEMMA. If LL~~ = vD then v is a Hermitian square if and only 

if it is positive in every ordering of Q(X + X""1). 
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The lemma depends on the fact that only the rational prime p ramifies 
in 0(A). It then proceeds from a combination of the local norm index 
theorem for units [6, IX, p. 187] with the reciprocity law for Hubert symbols 
in the number field Q(\ + X - 1 ) . As a consequence of Landherr [5, p. 118, 
Example 4 ] , this lemma eliminates torsion in H0(D). It is possible to deter­
mine H0(D) completely. It is necessary to produce elements v E Q(\ + X~*)* 
with arbitrarily prescribed signs and satisfying LL~l = vD. This cannot be 
accomplished, in general, by only selecting units in D* n Q(\ + X - 1 )* , and 
the argument involves a careful analysis of the role of the homology groups of 
Z2 acting on the ideal class group of D via conjugation of fractional ZMdeals. 

Beginning with n = 0, Lemmas (2.2), (2.1) and (1.2) are combined 
inductively to yield (1.1)'for the cyclic p-groups. Since D* contains an 
imaginary unit, H0(D) — H2(D) additively so there is no special problem in 
handling the symplectic case. 

3. The general case. We express IT as a direct sum TT = irx © Z n+1 

with n as large as possible. Now proceeding as in (2.1) we split 
W*(Z(l/p), IT) into a direct sum W*(Z(l/p), rr1 0 Z n) 0 HJD, irx). 

From our choice of n we may identify the character group 7r* with 
Horn (irl9D*). It follows readily that HJD, irt)~Z(irf) ® HJD). Com­
bining (2.1) and (1.2) with this observation, (1.1) is established. 

For a specific example if p is odd, the multisignature is an isomorphism 
of W#(Z, Zp) onto the subring of the group ring Z(Zp) consisting of those 
elements which can be expressed in the form 

k . . k 
mo ' e + IL mff + r _ / ) + 2Z nf(TJ - r _ / ) ' 

l l 

where k = (p - l)/2 and the integral coefficients satisfy ml = m2 = • • • = 
mk (mod 2) and nx = n2 = • • • = nk (mod 2). 

ADDED IN PROOF. Theorem (1.1) can be proven for general p-groups 

IT, for example by the induction techniques of Dress [2]. 

REFERENCES 

1. M. F. Atiyah and I. M. Singer, The index of elliptic operators. Ill, Ann. of 

Math (2) 87 (1968), 546-604. MR 38 #5245. 

2. A. Dress, Induction and structure theorems for Grothendieck and Witt rings 

of orthogonal representations of finite groups, Bull. Amer. Math. Soc. 79 (1973), 741-745. 



1 1 8 2 J. P. ALEXANDER, P. E. CONNER, G. C. HAMRICK AND J. W. VICK 

3. A. Frolich and A. M. McEvett, The representation of groups by automorphisms 

of forms, J. Algebra 12 (1969), 114-133. MR 39 #1569. 

4. A. Frôlich, Orthogonal and symplectic representations of groups, Proc. 

London Math. Soc. (3) 24 (1972), 470-506 . MR 46 #7362. 

5. J. W. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse der 

Mathematik und ihrer Grenzgebiete, Band 73, Springer-Ver lag, Berlin and New York, 1973. 

6. S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass., 1970. 

MR 44 # 1 8 1 . 

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON 

ROUGE, LOUISIANA 70803 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, 

AUSTIN, TEXAS 78712 


