WITT CLASSES OF INTEGRAL REPRESENTATIONS OF AN ABELIAN p-GROUP

BY J. P. ALEXANDER, P. E. CONNER, G. C. HAMRICK AND J. W. VICK¹

Communicated by Glen Bredon, April 19, 1974

- 1. Introduction. For a Dedekind domain, R, the orthogonal and symplectic representations of a finite group, π , on finitely-generated projective inner-product modules over R admit a Witt equivalence relation, and the resulting equivalence classes form a commutative algebra, $W_*(R, \pi)$, over the Witt ring of R. This concept has received considerable attention recently [2], [3], [4]. Our interest is motivated by the fact that $W_*(Z, \pi)$ is so very specifically related to the bordism classification of smooth, orientation preserving actions of π on closed even-dimensional manifolds. We shall discuss
- (1.1) THEOREM. If, for p an odd prime, π is an abelian p-group then $W_*(Z, \pi)$ contains no torsion.

A corollary of (1.1) is that for an action (π, M^{2k}) of such a group on a closed oriented manifold, the Atiyah-Singer-Segal G-signature theorem [1] determines the integral Witt class of $(\pi, H^*(M; Z)/\text{tor})$ uniquely. The present techniques may also be applied to determine $\mathcal{W}_*(Z, \pi)$ for an abelian 2-group, however torsion is present always. Thus for an orientation preserving action (π, M^{2k}) of an abelian 2-group, a torsion valued invariant, as well as the multisignature, must be computed.

By rough analogy with [5, IV, (3.3)] there is

(1.2) LEMMA. For any p-group

$$W_2(Z, \pi) \simeq W_2(Z(1/p), \pi),$$

and there is a split short exact sequence

$$0 \longrightarrow W_0(Z, \pi) \longrightarrow W_0(Z(1/p), \pi) \longrightarrow W(Z_p) \longrightarrow 0.$$

AMS (MOS) subject classifications (1970). Primary 57D85; Secondary 10C05. Key words and phrases, Bordism, representation, Witt ring.

¹ The authors were supported in part by the National Science Foundation.

We use the subscripts 0 and 2 respectively to denote orthogonal and symplectic representations.

- 2. Cyclic p-groups. From this point we restrict our attention to odd primes. For $n \ge 0$ we denote by $Q(\lambda)$ the p^{n+1} -cyclotomic extension of the rationals. In the ring of algebraic integers, $Z(\lambda)$, there is the multiplicative subset, S, generated by the rational prime, p, and $S^{-1}Z(\lambda) = D \subset Q(\lambda)$ is a Dedekind domain invariant under complex conjugation. We may thus speak of the Witt ring of Hermitian inner-product modules over D, $H_0(D)$, and by introducing skew-Hermitian inner-products there is $H_2(D)$ and hence an algebra, $H_*(D)$.
 - (2.1) Lemma. For $n \ge 0$ there is an additive isomorphism $W_*(Z(1/p), Z_{p^{n+1}}) \simeq W_*(Z(1/p), Z_{p^n}) \oplus H_*(D).$

Very briefly, we consider a $(Z_{p^{n+1}}, V)$ where V is an inner-product module over Z(1/p) and choose a generator $T \in Z_{p^{n+1}}$. With $\tau = T^{p^n}$, we introduce into V a selfadjoint projection operator

$$\sum v = (v + \tau(v) + \cdots + \tau^{p-1}(v))/p.$$

This yields an orthogonal decomposition $V=I\oplus I^\perp$ into the image, I, of Σ and the kernel, I^\perp . On I the subgroup generated by τ acts trivially, so we may replace $Z_{p^{n+1}}$ by the quotient group Z_{p^n} . Now D is the quotient of the group ring $Z(1/p)(Z_{p^{n+1}})$ by the principal ideal which $1+\tau+\cdots+\tau^{p-1}$ generates. In this fashion I^\perp becomes a projective D-module. The (skew-)Hermitian inner-product on I^\perp is $[v,w]=\Sigma_i(v,T^jw)\lambda^j$.

At this point standard algebraic number theory intervenes in proving

(2.2) LEMMA. The Hermitian Witt ring $H_0(D)$ has no torsion.

Denoting by $Q(\lambda + \lambda^{-1})$ the subfield of real elements in $Q(\lambda)$, we may paraphrase the discussion in [5, IV, §4] to show that $v \in Q(\lambda + \lambda^{-1})^*$ can, up to mulitplication by a Hermitian square, be realized as the discriminant of a Hermitian inner-product module over D with even rank if and only if $LL^- = vD$ for some fractional D-ideal $L \subseteq Q(\lambda)$. The key lemma then is

(2.3) LEMMA. If $LL^- = vD$ then v is a Hermitian square if and only if it is positive in every ordering of $Q(\lambda + \lambda^{-1})$.

The lemma depends on the fact that only the rational prime p ramifies in $Q(\lambda)$. It then proceeds from a combination of the local norm index theorem for units [6, IX, p. 187] with the reciprocity law for Hilbert symbols in the number field $Q(\lambda + \lambda^{-1})$. As a consequence of Landherr [5, p. 118, Example 4], this lemma eliminates torsion in $H_0(D)$. It is possible to determine $H_0(D)$ completely. It is necessary to produce elements $v \in Q(\lambda + \lambda^{-1})^*$ with arbitrarily prescribed signs and satisfying $LL^{-1} = vD$. This cannot be accomplished, in general, by only selecting units in $D^* \cap Q(\lambda + \lambda^{-1})^*$, and the argument involves a careful analysis of the role of the homology groups of Z_2 acting on the ideal class group of D via conjugation of fractional D-ideals.

Beginning with n=0, Lemmas (2.2), (2.1) and (1.2) are combined inductively to yield (1.1) for the cyclic p-groups. Since D^* contains an imaginary unit, $H_0(D) \simeq H_2(D)$ additively so there is no special problem in handling the symplectic case.

3. The general case. We express π as a direct sum $\pi = \pi_1 \oplus Z_{p^{n+1}}$ with n as large as possible. Now proceeding as in (2.1) we split $\mathcal{W}_*(Z(1/p),\pi)$ into a direct sum $\mathcal{W}_*(Z(1/p),\pi_1 \oplus Z_{p^n}) \oplus \mathcal{H}_*(D,\pi_1)$. From our choice of n we may identify the character group π_1^* with Hom (π_1,D^*) . It follows readily that $\mathcal{H}_*(D,\pi_1) \cong Z(\pi_1^*) \otimes \mathcal{H}_*(D)$. Combining (2.1) and (1.2) with this observation, (1.1) is established.

For a specific example if p is odd, the multisignature is an isomorphism of $\mathcal{W}_*(Z,Z_p)$ onto the subring of the group ring $Z(Z_p)$ consisting of those elements which can be expressed in the form

$$m_0 \cdot e + \sum_{1}^{k} m_j(\tau^j + \tau^{-j}) + \sum_{1}^{k} n_j(\tau^j - \tau^{-j}),$$

where k = (p-1)/2 and the integral coefficients satisfy $m_1 = m_2 = \cdots = m_k \pmod{2}$ and $n_1 = n_2 = \cdots = n_k \pmod{2}$.

ADDED IN PROOF. Theorem (1.1) can be proven for general p-groups π , for example by the induction techniques of Dress [2].

REFERENCES

- 1. M. F. Atiyah and I. M. Singer, *The index of elliptic operators*. III, Ann. of Math (2) 87 (1968), 546-604. MR 38 #5245.
- 2. A. Dress, Induction and structure theorems for Grothendieck and Witt rings of orthogonal representations of finite groups, Bull. Amer. Math. Soc. 79 (1973), 741-745.

1182 J. P. ALEXANDER, P. E. CONNER, G. C. HAMRICK AND J. W. VICK

- 3. A. Frölich and A. M. McEvett, The representation of groups by automorphisms of forms, J. Algebra 12 (1969), 114-133. MR 39 #1569.
- 4. A. Frölich, Orthogonal and symplectic representations of groups, Proc. London Math. Soc. (3) 24 (1972), 470-506. MR 46 #7362.
- 5. J. W. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, Berlin and New York, 1973.
- 6. S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass., 1970. MR 44 #181.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712