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1. Introduction. For a Dedekind domain, R, the orthogonal and
symplectic representations of a finite group, m, on finitely-generated projec-
tive inner-product modules over R admit a Witt equivalence relation, and
the resulting equivalence classes form a commutative algebra, W, (R, ), over
the Witt ring of R. This concept has received considerable attention recently
[2], [3], [4]. Our interest is motivated by the fact that W,(Z, m) is so very
specifically related to the bordism classification of smooth, orientation pre-
serving actions of 7 on closed even-dimensional manifolds. We shall discuss

(1.1) THEOREM. If, for p an odd prime, w is an abelian p-group then
W,(Z, m) contains no torsion.

A corollary of (1.1) is that for an action (m, M?¥) of such a group on
a closed oriented manifold, the Atiyah-Singer-Segal G-signature theorem [1]
determines the integral Witt class of (w, H*(M; Z)/tor) uniquely. The pres-
ent techniques may also be applied to determine (,(Z, m) for an abelian
2-group, however torsion is present always. Thus for an orientation preserving
action (m, M?¥) of an abelian 2-group, a torsion valued invariant, as well as
the multisignature, must be computed.

By rough analogy with [5, IV, (3.3)] there is

(1.2) Lemma. Forany p-group
w2(Zy 7() = wz(Z(l/p)s ﬂ)s
and there is a split short exact sequence

0 — Wo(Z, M) — Wy (Z(1/p), ) — W(Z,) — 0.
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We use the subscripts 0 and 2 respectively to denote orthogonal and
symplectic representations.

2. Cyclic p-groups. From this point we restrict our attention to odd
primes. For n >0 we denote by Q(A\) the p"*!l.cyclotomic extension of
the rationals. In the ring of algebraic integers, Z(A), there is the multiplica-
tive subset, S, generated by the rational prime, p, and S™!'Z(\)=D C
QO(M) is a Dedekind domain invariant ynder complex conjugation. We may
thus speak of the Witt ring of Hermitian inner-product modules over D,
Ho(D), and by introducing skew-Hermitian inner-products there is H,(D) and
hence an algebra, H,(D).

(2.1) LEMMA. For n =0 there is an additive isomorphism

W.(Z(1/p), Z n+1) = W 2(W/p), 2 ) @ H (D).

Very briefly, we consider a (Z , ., V) where V is an inner-product
module over Z(1/p) and choose a generator T€Z ,,,. With 7= Te",
p
we introduce into V a selfadjoint projection operator

2u=(@+1@) +-r + P ).

This yields an orthogonal decomposition ¥V =17 I into the image, I, of
% and the kernel, I*. On I the subgroup generated by 7 acts trivially,
so we may replace Z , ., by the quotient group Z ,. Now D is the
quotient of the grouppring Z(1/p)Z , ) by the prli,ncipal ideal which
1+7+-+++7P"1 generates. In this fashion I* becomes a projective
D-module. The (skew-)Hermitian inner-product on I* is [v, w] =
Z; (v, T/w)N.

At this point standard algebraic number theory intervenes in proving

(2.2) LeMMA. The Hermitian Witt ring H(D) has no torsion.

Denoting by Q(A + A1) the subfield of real elements in Q(X), we
may paraphrase the discussion in [5, IV, §4] to show that vE€ Q(A + A H*
can, up to mulitplication by a Hermitian square, be realized as the discriminant
of a Hermitian inner-product module over D with even rank if and only if
LL~™ =uD for some fractional D-ideal L C Q(N). The key lemma then is

(2.3) LEmMA. If LL™ =vD then v is a Hermitian square if and only
if it is positive in every ordering of Q(\ + A7 1).



1974] WITT CLASSES OF INTEGRAL REPRESENTATIONS 1181

The lemma depends on the fact that only the rational prime p ramifies
in Q(A). It then proceeds from a combination of the local norm index
theorem for units [6, IX, p. 187] with the reciprocity law for Hilbert symbols
in the number field Q(A + A~!). As a consequence of Landherr [5, p. 118,
Example 4], this lemma eliminates torsion in Hy(D). It is possible to deter-
mine H,(D) completely. It is necessary to produce elements v € Q(\ + A H*
with arbitrarily prescribed signs and satisfying LL~! = vD. This cannot be
accomplished, in general, by only selecting units in D* N Q(X + A~1)*, and
the argument involves a careful analysis of the role of the homology groups of
Z, acting on the ideal class group of D via conjugation of fractional D-ideals.

Beginning with n = 0, Lemmas (2.2), (2.1) and (1.2) are combined
inductively to yield (1.1)for the cyclic p-groups. Since D* contains an
imaginary unit, Hy(D) = H,(D) additively so there is no special problem in
handling the symplectic case.

3. The general case. We express m as a direct sum n=7, © Z .,
with n as large as possible. Now proceeding as in (2.1) we split
W,(Z(1/p), ) into a direct sum W (Z(1/p), m; & Zp,,) ® H,(D,m).

From our choice of n we may identify the character group n} with
Hom (7, , D¥). It follows readily that H D, m) ~ Z(n}) ® H (D). Com-
bining (2.1) and (1.2) with this observation, (1.1) is established.

For a specific example if p is odd, the multisignature is an isomorphism
of W.(Z, Z,) onto the subring of the group ring Z(Z,) consisting of those
elements which can be expressed in the form

k . . k . .
my-e+ Yy m].(r’ +r )+ nyr! — 177,
1 1

where k = (p — 1)/2 and the integral coefficients satisfy m, =m, =++- =
m; (mod 2) and n, =n, =+ =n; (mod 2).

ADDED IN PROOF. Theorem (1.1) can be proven for general p-groups
w, for example by the induction techniques of Dress [2].
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