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The purpose of this note is to describe some of the main results per
taining to the computation of surgery groups of finite groups found in a 
joint paper [7] with W. Scharlau, one book [1] and five papers [2]-[6] of 
the author. Mention of the results is made in [10]. I shall indicate the 
source of each result. Throughout this note TT denotes a group. Let us 
begin with the results for surgery groups of odd torsion groups. Results 
closely related to the first three theorems have been announced in 
Wall [12]. 

THEOREM 1 [2]. Iftr is an odd torsion group then the surgery obstruction 
groups 

Let r^ denote the number (infinite if TT is infinite) of irreducible real 
representations of TT. 

THEOREM 2 [3]. If IT is an odd torsion group then the surgery obstruction 
groups 

L|W(TT) = Zr°° if n = 0 mod 2, 

= Z'00"-1 0 Z2 ifn==l mod 2, 

and in the latter case the nontrivial element ofZ2 is represented by the based 
quadratic form (ZTT® ZTT, ({ J)). 

Let ZTT and QTT be the integral and rational group rings of TT. Let 
KQ{ZTT, QTT) be the relative group in the exact sequence of a localization 
[9 , IX, §6] and let K0(ZTT)=K0(ZTT)I[ZTT] be the projective class group 
of ZTT. K0(ZTT, QTT) is generated by pairs (M, N) of finitely-generated 
projective Z7r-lattices on a free Ô7T-module and if M*=Hom^^(M, ZTT), 
then K0(ZTT, QTT) has a Z2-action defined by (M, iV)i—> — (M*, TV*), and 
K0(ZTT) a Z2-action defined by Mh-»-M*. Let H°(K0(ZTT9 QTT)) be the 
zeroth cohomology group of the Z2-action on K0(ZTT, QTT) and let 

H(TT) = coker H°(K0(ZTT, QTT)) -> K0(ZTT). 
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In [6] I show that when TT is finite abelian, K0(ZTT, QTT)^I(ZTT) (=group 
of invertible fractional Z7r-ideals), KQ(ZTT)^C\(ZTT) (=T(ZTT)J'principal 
fractional ideals), and the Z2-actions on K0(ZTT, QTT) and KQ(ZTT) corre
spond to the natural involutions on I(ZTT) and C\{ZTT) given by the in
volution on QTT. 

THEOREM 3 [3], If V is an odd torsion group then 

L\n(iT) = Zr°° 0 H(TT) ifn = 0 mod 2, 

= Z1"00-1 0 Z2 0 H(TT) ifn = l mod 2. 

The nontrivial element of Z2 is represented by the quadratic form (ZTT® 

Zn, ({ J)) and the elements of H(TT) correspond to the classes of hyperbolic 
modules H(M) such that M is finitely-generated projective and M®M* is 
free. 

Let A be a ring with involution and let A e center A such that AÂ=1. 
Let KUQ(A) (=KQ%(A, max), see [1, §1B]) be the Grothendieck group of 
nonsingular even A-hermitian forms on finitely-generated projective 
/1-modules and let W0(A)=KU0(A)/hyperbolic modules. 

THEOREM 4 [3]. Let 

F number field with involution, 
E fixed field of the involution, 
S ring of integers in F, 
A À e S such that AÂ=1, 
ir finite odd order or finite abelian group. 

Give STT the involution which sends each element of TT to its inverse and 
agrees with the involution on S. 

(i) Assume F has nontrivial involution, E has an undecomposed real 
prime, and FjE is totally unramified. Then W0(STT) is torsion free of the 
same (finite) rank as W0(FTT). 

(ii) Assume F has trivial involution, F is real, and each rational prime \ 
[TT:1] is inert. Assume either A= — 1 or the class number of F is odd. Then 
W0(STT) is torsion free of the same (finite) rank as W0(FTT). 

Let KQl(A) (=KQl(A, min), see [1, §1B]) be the Grothendieck group 
of nonsingular quadratic forms on finitely-generated projective v4-modules. 

THEOREM 5 [3]. Ifrr is a finite odd order group then 

KUI(ZTT) = Z r o o + 1 0 J5T(ir) if A = 1, 

= 77«®H{ir) ifX= - 1 . 

KQI(ZTT) = Z roo+1 0 H(TT) if A = 1, 

= zr°° © z2 e H(TT) ifx = - l . 
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There is a general procedure described in [1, §§1B, 3] to obtain results 
on Grothendieck groups of quadratic forms from Grothendieck groups 
of hermitian forms, and vise versa. We apply this now to the case of 
group rings. Let KQf-(Z7r)haaeàt proj (resp. KUf(Z7r)haaeAi proj) be the 
Grothendieck groups of nonsingular quadratic (resp ±1-hermitian) 
forms on finitely-generated based or projective Z7r-modules. Let 
WQ^\Z7r)hasedt proj (resp. Wt(Zir)baae(it proj) be KQf(Zv)haaedt proj (resp. 
J^t/f1(Z7r)basedj proj) modulo hyperbolic modules on based or projective 
modules. 

THEOREM 6 [1], No assumption that TT be finite is made. 

, N -KQo (^^based.proj * KU0 (Z7r)b a s e d t p r o j , 

( a ) i ^ 1 
WQo"1(^7r)based,proj * ^o" Gebased.proj' 

(b) Assume that the elements of exponent 2 in TT generate a nilpotent 
subgroup {equivalently the 2-torsion elements generate a 2-group). Then 
the sequences below are split exact 

0 —• Z2 —>• KQ^ (Z7r)basedfProj -> KU^ (Z7r)based proj -> 0, 

0 - ^ Z2 -> WQQ (Z7r)basedfProj -> ^X^^based.proj ~+ 0> 

and in both cases Z2 is generated by the difference [ZTT^ZTT, (\ ?)] — 
[H(ZTT)]. 

Let KQ\X(ZTT) (resp. KU^iZrr)) be Kx of the category of nonsingular 
quadratic (resp. even ±1-hermitian) forms on finitely-generated projective 
modules. For the standard matrix definition of these groups see [1, §§5, 6]. 
The next result has been obtained by Bass [8] in the case A= — 1 and by 
Siu [11] in the case A=l and TT cyclic. 

THEOREM 7 [5], Let TT be an odd torsion abelian group. Then there 
are split exact sequences 

0 -> Z2 -> KQI(ZTT) = KU\(ZTT) - ^ > ±TT -> 0, 

0 -> Z4 -> KQ[\Zw) ^>TT-+0, 

KUÏ\ZTT) ^ > TT. 

In the first case Z2 is generated by the class of the matrix (~J _?) and 
in the second case Z4 by (? ~J). 

For a related result in the nonabelian case see [2]. 
Give Wh(7r) the involution defined by the conjugate transpose. The 

next result has been obtained also by Bass [8, §4]. 
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THEOREM 8 [4]. If TT is a torsion abelian group then the involution on the 
Whitehead group Wh(7r) is trivial. 

Let i/0(Wh(7r)) and #°(Wh(7r)) denote the reduced homology and co-
homology groups of the involution on Wh(7r). Let r=number of irreducible 
rational representations of 77 and let r2=Z2-rank (Z2(g>Wh(7r)). The 
case 77 abelian of the next theorem has been obtained also by Bass [8, §4]. 

THEOREM 9 [4]. (a) If TT is a finite odd torsion group then 

#0(Wh(77)) = 0, #°(Wh(77)) = Z\™-\ 

(b) If TT is a finite abelian group then 

#0(Wh(77)) = Zr
2\ #°(Wh(77)) = Zr

2™-r+r\ 
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