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0. Let K be a finite simplicial complex. Eckmann (see [1]) observed that 
any inner product in cochain spaces CQ(K; R) gives rise to a combinatorial 
Hodge theory. The purpose of this note is to announce that if K is a smooth 
triangulation of a compact, oriented Riemannian manifold X, then the 
combinatorial Hodge theory (for a suitable choice of inner product in 
cochain spaces) is an approximation of the Hodge theory of forms on 
X. We wish to thank L. Bers, H. Garland, and I. M. Singer for their 
help in our research. 

1. Whitney map and definition of inner product. Let Aq and L2 AQ 

denote the spaces C00 and L2 (/-forms on X respectively. Whitney (see [2]) 
defined a linear mapping W: CQ(K; R)->L2 AQ, as follows. Let cr= 
[/?o, * ' • » PQ] be a ^-simplex of K and let //0, • • • , JUQ be the barycentric 
coordinates corresponding to JP0,/?1? • • • , pg respectively; then 

Q 

Wo =ql V ( —1)*/^ dju0 A • • • A d/^_i A d/ui+1 A • • • A djuQ. 

This defines W uniquely since ç-simplexes span CQ(K; R). The ^ ' s are 
C00 on every closed simplex of K which allows us to apply the exterior 
derivative din the formula above. 

Let c, c' be two ^-cochains. We set (c, c') = $x Wc K* Wc'. ( , ) is 
obviously symmetric and positive semidefinite. It actually turns out to be 
an inner product. 

2. Approximation theorem. Let SnK be the nth standard subdivision 
of K (see [2]). We write Cl=Cq(SnK\ R). For every nonnegative integer n 
the Whitney map Wn : Cl~>L2 AQ induces an inner product in Cq

n as above. 
Let Rn\ Aq~>Cl be the de Rham map defined by integration of forms over 
simplicial chains of SnK. 
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Let || || p be the norm in AQT:¥(X)J) induced by the Riemannian metric. 
Let || || be the norm in L2 Aq. Let r\n be the mesh of SnK. Of course, 
lim^oo rjn=0. We can now state the approximation theorem. 

THEOREM 1. Let f be a C00 q-form on X. There exists a constant Cf such 
that for every nonegative integer n 

\\f(p)-WnRnf(p)\\^Crr]n 

almost everywhere on X. 

COROLLARY. There exists a constant cf such that \\f— WnRnf\\^ 
cf • rjn for all nonnegative integers n. 

3. Combinatorial Hodge theory and passage to the limit. Let 
dn : Cn~>Cn+1 be the simplicial coboundary. Let dn be the adjoint of dn 

with respect to the inner product described above. We set /S.n=^dnôn+ôndn 

and let Hq
n be the kernel of An acting on C*. Cl has an orthogonal decom

position (Hodge decomposition) 

Cn = dnCn © Hn 0 onCn . 

Moreover Hl={c e Cn\dnc=ônc=0} and Ha
n is isomorphic to HQ(X; R), 

the qth cohomology group of X. 

THEOREM 2. Let f=dg+h + ôk be the Hodge decomposition of a 
C00 q-form f Let Rnf=dngn+hn + dnkn be the Hodge decomposition of the 
cochain Rnf There exists a constant cf such that, for n=l, 2, • • • , 

Wndngn - dg\\ ^ cf-r)n, 

\\Wnhn-h\\ ^crVn, 

\\Wndnkn - dk\\ ^crVn. 

Let 0=A 0<A 1^/ l2^ , • •->oo be the sequence of eigenvalues of the 
Laplacian A acting on C00 functions on X. For an integer n^.0, let 
</(/!)=dim Cl and let 0=AW<A<P^W^- • '^M be the sequence of 
eigenvalues of combinatorial Laplacian Aw acting on C°. 

THEOREM 3. For every positive integer i there exists a constant ct such 
that, ifi<:d(n), A ^ - Q ^ A ^ A ^ . In particular, lim^*, KV = K 

We conjecture that Theorem 3 is true for all dimensions q=0, 1, 2, • • • , 
d imZ. 

4. Generalizations. The above technique and results can be generalized 
in two ways. On one hand, we can replace X by a manifold with boundary 
and consider forms satisfying certain boundary conditions and relative 
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cochains. On the other hand, our results generalize to forms and cochains 
with values in a vector bundle induced by an orthogonal representation 
of the fundamental group of X. Results analogous to Theorems 1, 2, 3 
hold in both cases. 
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