ZEROS OF DERIVATIVE OF RIEMANN'S ξ-FUNCTION

BY NORMAN LEVINSON ${ }^{1}$

Communicated March 19, 1974
Riemann's ξ-function is defined by $\xi(s)=H(s) \zeta(s)$ where $\zeta(s)$ is the Riemann zeta-function and $H(s)=\frac{1}{2}\left(s^{2}-s\right) \pi^{-s / 2} \Gamma(s / 2)$. The functional equation is $\xi(s)=\xi(1-s)$. Moreover ξ is an entire function which has as its zeros precisely those of ζ in the critical strip. Because $\xi\left(\frac{1}{2}+i t\right)$ is real, it follows that between consecutive zeros of ξ on the $\frac{1}{2}$-line there is at least one zero of ξ^{\prime}.

It has recently been shown [1], [2] that $\zeta(s)$ has at least $\frac{1}{3}$ of its zeros in the critical strip on $\sigma=\frac{1}{2}$. Here a similar result will be proved for $\xi^{\prime}(s)$ (for which $\frac{1}{3}$ is already implied by the remark above). Let $U=T / \log ^{10} T$. Then the following theorem will be sketched.

Theorem. More than $\frac{7}{10}$ of the zeros of $\xi^{\prime}(s)$ in $T<t<T+U$ occur on $\sigma=\frac{1}{2}$.

By Stirling's formula, for $|\sigma|<10, H(s)=e^{F(s)}$, where

$$
F^{\prime}(s)=\frac{1}{2} \log s / 2 \pi+O(1 / s), \quad F^{\prime \prime}(s)=O(1 / s)
$$

From $\xi(s)=H(s) \zeta(s)=H(1-s) \zeta(1-s)$ follows

$$
\begin{align*}
\xi^{\prime}(s) & =H^{\prime}(s) \zeta(s)+H(s) \zeta^{\prime}(s) \\
& =-H^{\prime}(1-s) \zeta(1-s)-H(1-s) \zeta^{\prime}(1-s) \tag{1}
\end{align*}
$$

and also

$$
\begin{aligned}
& H^{\prime \prime}(s) \zeta(s)+2 H^{\prime}(s) \zeta^{\prime}(s)+H(s) \zeta^{\prime \prime}(s) \\
& \quad=H^{\prime \prime}(1-s) \zeta(1-s)+2 H^{\prime}(1-s) \zeta^{\prime}(1-s)+H(1-s) \zeta^{\prime \prime}(1-s)
\end{aligned}
$$

Since $H^{\prime}=H F^{\prime}$, and $H^{\prime \prime}=H^{\prime} F^{\prime}+H F^{\prime \prime}$,

$$
\begin{aligned}
& F^{\prime}(s)\left[H^{\prime}(s) \zeta(s)+H(s) \zeta^{\prime}(s)\right] \\
& \quad-F^{\prime}(1-s)\left[H^{\prime}(1-s) \zeta(1-s)+H(1-s) \zeta^{\prime}(1-s)\right] \\
&=-H^{\prime}(s) \zeta^{\prime}(s)-H(s) \zeta^{\prime \prime}(s)-H(s) F^{\prime \prime}(s) \zeta(s) \\
&+H^{\prime}(1-s) \zeta^{\prime}(1-s)+H(1-s) \zeta^{\prime \prime}(1-s) \\
&+H(1-s) F^{\prime \prime}(1-s) \zeta(1-s)
\end{aligned}
$$

[^0]By (1) this can be written as

$$
\begin{align*}
\left(F^{\prime}(s)+\right. & \left.F^{\prime}(1-s)\right) \xi^{\prime}(s) \\
= & -H(s)\left[F^{\prime}(s) \zeta^{\prime}(s)+\zeta^{\prime \prime}(s)+F^{\prime \prime}(s) \zeta(s)\right] \tag{2}\\
& +H(1-s)\left[F^{\prime}(1-s) \zeta^{\prime}(1-s)+\zeta^{\prime \prime}(1-s)+F^{\prime \prime}(1-s) \zeta(1-s)\right]
\end{align*}
$$

From the functional equation, $-2 \xi^{\prime}(s)=-\xi^{\prime}(s)+\xi^{\prime}(1-s)$, and so

$$
\begin{aligned}
-2 \xi^{\prime}(s)(& \left.F^{\prime}(s)+F^{\prime}(1-s)\right) \\
= & -\left(F^{\prime}(s)+F^{\prime}(1-s)\right)\left(H^{\prime}(s) \zeta(s)+H(s) \zeta^{\prime}(s)\right) \\
& +\left(F^{\prime}(s)+F^{\prime}(1-s)\right)\left(H^{\prime}(1-s) \zeta(1-s)+H(1-s) \zeta^{\prime}(1-s)\right)
\end{aligned}
$$

Adding the above to (2) gives

$$
\begin{align*}
- & \left(F^{\prime}(s)+F^{\prime}(1-s)\right) \xi^{\prime}(s) \\
= & -H(s)\left[F^{\prime}(s) \zeta^{\prime}(s)+\zeta^{\prime \prime}(s)+F^{\prime \prime}(s) \zeta(s)\right] \\
& -H(s)\left[F^{\prime}(s)+F^{\prime}(1-s)\right]\left[F^{\prime}(s) \zeta(s)+\zeta^{\prime}(s)\right] \tag{3}\\
& +H\left((1-s)\left[F^{\prime}(1-s) \zeta^{\prime}(1-s)+\zeta^{\prime \prime}(1-s)+F^{\prime \prime}(1-s) \zeta(1-s)\right]\right) \\
& +H(1-s)\left[F^{\prime}(s)+F^{\prime}(1-s)\right]\left[F^{\prime}(1-s) \zeta(1-s)+\zeta^{\prime}(1-s)\right] .
\end{align*}
$$

Let

$$
\begin{aligned}
G(s)= & \zeta(s)+\zeta^{\prime}(s) / F^{\prime}(s) \\
& +\left[F^{\prime}(s)+F^{\prime}(1-s)\right]^{-1}\left(\zeta^{\prime}(s)+\zeta^{\prime \prime}(s) / F^{\prime}(s)+F^{\prime \prime}(s) \zeta(s) / F^{\prime}(s)\right)
\end{aligned}
$$

Then (3) becomes

$$
\xi^{\prime}(s)=F^{\prime}(s) H(s) G(s)-F^{\prime}(1-s) H(1-s) G(1-s) .
$$

For $s=\frac{1}{2}+i t$, the right side above is the difference between two complex conjugate quantities. Hence $\xi^{\prime}\left(\frac{1}{2}+i t\right)=0$, where

$$
\arg \left(F^{\prime} H G\left(\frac{1}{2}+i t\right)\right) \equiv 0(\bmod \pi)
$$

Since $F^{\prime} \sim(\log t / 2 \pi) / 2$, it has little effect on the change in argument as t increases. By Stirling's formula arg $H\left(\frac{1}{2}+i t\right)$ changes rapidly and by itself would supply the full quota of zeros of $\xi^{\prime}(s)$ on $\sigma=\frac{1}{2}$. However G also plays a role. What will be shown is that the change in $\arg G$ is sufficiently restricted so that it cancels less than 30% of the change in $\arg H$.

To get the change in $\arg G\left(\frac{1}{2}+i t\right)$, the principle of the argument can be used. The determination of the number of zeros of $G(s)$ in a rectangle D with vertices $\left(\frac{1}{2}+i T, 3+i T, \frac{1}{2}+i(T+U), 3+i(t+U)\right)$ leads in a familiar way to the change in $\arg G$ on $\sigma=\frac{1}{2}, T<t<T+U$. To get the number of zeros of G in D, Littlewood's lemma [3, §9.9] is used in a familiar way [3, $\S 9.15]$. However it turns out to be more efficient to first multiply G by an
entire function $\psi(s)$ even though this may introduce extra zeros. The key term in the estimate of the number of zeros of ψG in D is

$$
\int_{T}^{T+U} \log |\psi G(a+i t)| d t / 2 \pi\left(\frac{1}{2}-a\right)
$$

where $a<\frac{1}{2}$ and $\frac{1}{2}-a$ is small. Use is now made of

$$
\int_{T}^{T+U} \log |\psi G(a+i t)| d t \leqq \frac{U}{2} \log \left(\frac{1}{U} \int_{T}^{T+U}|\psi G(a+i t)|^{2} d t\right)
$$

The choice for ψ is

$$
\psi(s)=\sum_{j \leq y} \frac{\mu(j) \log y / j}{j^{1 / 2-a} \log y} \frac{1}{j^{s}},
$$

and $y=T^{1 / 2} / \log ^{20} T$. To compute

$$
J=\frac{1}{U} \int_{T}^{T+U}|\psi G(a+i t)|^{2} d t
$$

it is necessary to express ζ and its derivatives in terms of the approximate functional equation as done in [1], [2]. Let $R=\left(\frac{1}{2}-a\right) \log T / 2 \pi$. Then lengthy calculations lead to

$$
\begin{aligned}
J= & e^{2 R}\left(\frac{1}{24 R}-\frac{1}{12 R^{2}}+\frac{2}{3 R^{3}}-\frac{3}{R^{4}}+\frac{6}{R^{5}}\right) \\
& -\frac{R}{12}+\frac{3}{4}-\frac{29}{24 R}-\frac{13}{4 R^{2}}-\frac{20}{3 R^{3}}-\frac{9}{R^{4}}-\frac{6}{R^{5}} \\
& +O\left(\frac{(\log \log T)^{10}}{\log T}\right)
\end{aligned}
$$

For $R=1.1, J \leqq 1.3634$. Therefore

$$
\begin{aligned}
& \frac{1}{\frac{1}{2}-a} \int_{T}^{T+U} \log |\psi G(a+i t)| d t \\
& \quad \leqq \frac{U}{2\left(\frac{1}{2}-a\right)} \log 1.3634=U \log T / 2 \pi \frac{\log 1.3634}{2 R} \leqq 0.1414 U \log T / 2 \pi
\end{aligned}
$$

with $R=1.1$. Thus the change in $\arg G$ is at most $0.1414 U \log T / 2 \pi$. By Stirling's formula the change in $\arg H\left(\frac{1}{2}+i t\right)$ is essentially $\frac{1}{2} U \log T / 2 \pi$, and so the change in $\arg \left(H F^{\prime} G\right)$ is at least $0.3586 U \log T / 2 \pi$. Since the zeros occur $\bmod \pi$, the number is at least $0.7172 U(\log T / 2 \pi) / 2 \pi$ which is more than 0.7 of the total number in $T<t<T+U$.

References

1. N. Levinson, At least one third of zeros of Riemann's zeta-function are on $\sigma=\frac{1}{2}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1013-1015.
2. N. Levinson, More than one third of zeros of Riemann's zeta-function are on $\sigma=\frac{1}{2}$, Advances in Math. (to appear).
3. E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951. MR 13, 741.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

[^0]: AMS (MOS) subject classifications (1970). Primary 10H05,
 ${ }^{1}$ Supported in part by National Science Foundation Grant P22928.

