ZEROS OF DERIVATIVE OF RIEMANN'S ξ -FUNCTION

BY NORMAN LEVINSON¹

Communicated March 19, 1974

Riemann's ξ -function is defined by $\xi(s) = H(s)\zeta(s)$ where $\zeta(s)$ is the Riemann zeta-function and $H(s) = \frac{1}{2}(s^2 - s)\pi^{-s/2}\Gamma(s/2)$. The functional equation is $\xi(s) = \xi(1-s)$. Moreover ξ is an entire function which has as its zeros precisely those of ζ in the critical strip. Because $\xi(\frac{1}{2}+it)$ is real, it follows that between consecutive zeros of ξ on the $\frac{1}{2}$ -line there is at least one zero of ξ' .

It has recently been shown [1], [2] that $\zeta(s)$ has at least $\frac{1}{3}$ of its zeros in the critical strip on $\sigma = \frac{1}{2}$. Here a similar result will be proved for $\xi'(s)$ (for which $\frac{1}{3}$ is already implied by the remark above). Let $U = T/\log^{10} T$. Then the following theorem will be sketched.

THEOREM. More than $\frac{7}{10}$ of the zeros of $\xi'(s)$ in T < t < T + U occur on $\sigma = \frac{1}{2}$.

By Stirling's formula, for $|\sigma| < 10$, $H(s) = e^{F(s)}$, where

$$F'(s) = \frac{1}{2} \log s/2\pi + O(1/s), \qquad F''(s) = O(1/s).$$

From $\xi(s) = H(s)\zeta(s) = H(1-s)\zeta(1-s)$ follows

(1)
$$\xi'(s) = H'(s)\zeta(s) + H(s)\zeta'(s) \\ = -H'(1-s)\zeta(1-s) - H(1-s)\zeta'(1-s),$$

and also

$$H''(s)\zeta(s) + 2H'(s)\zeta'(s) + H(s)\zeta''(s) = H''(1-s)\zeta(1-s) + 2H'(1-s)\zeta'(1-s) + H(1-s)\zeta''(1-s).$$

Since H' = HF', and H'' = H'F' + HF'',

$$F'(s)[H'(s)\zeta(s) + H(s)\zeta'(s)] - F'(1-s)[H'(1-s)\zeta(1-s) + H(1-s)\zeta'(1-s)] = -H'(s)\zeta'(s) - H(s)\zeta''(s) - H(s)F''(s)\zeta(s) + H'(1-s)\zeta'(1-s) + H(1-s)\zeta''(1-s) + H(1-s)F''(1-s)\zeta(1-s).$$

AMS (MOS) subject classifications (1970). Primary 10H05,

¹ Supported in part by National Science Foundation Grant P22928.

Copyright @ American Mathematical Society 1974

By (1) this can be written as

$$(F'(s) + F'(1 - s))\xi'(s)$$
(2)
$$= -H(s)[F'(s)\zeta'(s) + \zeta''(s) + F''(s)\zeta(s)]$$

$$+ H(1 - s)[F'(1 - s)\zeta'(1 - s) + \zeta''(1 - s) + F''(1 - s)\zeta(1 - s)].$$

From the functional equation, $-2\xi'(s) = -\xi'(s) + \xi'(1-s)$, and so

$$\begin{aligned} -2\xi'(s)(F'(s) + F'(1 - s)) \\ &= -(F'(s) + F'(1 - s))(H'(s)\zeta(s) + H(s)\zeta'(s)) \\ &+ (F'(s) + F'(1 - s))(H'(1 - s)\zeta(1 - s) + H(1 - s)\zeta'(1 - s)). \end{aligned}$$

Adding the above to (2) gives

$$-(F'(s) + F'(1 - s))\xi'(s)$$

$$= -H(s)[F'(s)\zeta'(s) + \zeta''(s) + F''(s)\zeta(s)]$$
(3)
$$-H(s)[F'(s) + F'(1 - s)][F'(s)\zeta(s) + \zeta'(s)]$$

$$+H((1 - s)[F'(1 - s)\zeta'(1 - s) + \zeta''(1 - s) + F''(1 - s)\zeta(1 - s)])$$

$$+H(1 - s)[F'(s) + F'(1 - s)][F'(1 - s)\zeta(1 - s) + \zeta''(1 - s)].$$

Let

$$G(s) = \zeta(s) + \zeta'(s)/F'(s) + [F'(s) + F'(1-s)]^{-1}(\zeta'(s) + \zeta''(s)/F'(s) + F''(s)\zeta(s)/F'(s)).$$

Then (3) becomes

$$\xi'(s) = F'(s)H(s)G(s) - F'(1-s)H(1-s)G(1-s).$$

For $s=\frac{1}{2}+it$, the right side above is the difference between two complex conjugate quantities. Hence $\xi'(\frac{1}{2}+it)=0$, where

$$\arg(F'HG(\frac{1}{2}+it))\equiv 0 \pmod{\pi}.$$

Since $F' \sim (\log t/2\pi)/2$, it has little effect on the change in argument as t increases. By Stirling's formula arg $H(\frac{1}{2}+it)$ changes rapidly and by itself would supply the full quota of zeros of $\xi'(s)$ on $\sigma = \frac{1}{2}$. However G also plays a role. What will be shown is that the change in arg G is sufficiently restricted so that it cancels less than 30% of the change in arg H.

To get the change in arg $G(\frac{1}{2}+it)$, the principle of the argument can be used. The determination of the number of zeros of G(s) in a rectangle Dwith vertices $(\frac{1}{2}+iT, 3+iT, \frac{1}{2}+i(T+U), 3+i(t+U))$ leads in a familiar way to the change in arg G on $\sigma=\frac{1}{2}$, T < t < T+U. To get the number of zeros of G in D, Littlewood's lemma [3, §9.9] is used in a familiar way [3, §9.15]. However it turns out to be more efficient to first multiply G by an entire function $\psi(s)$ even though this may introduce extra zeros. The key term in the estimate of the number of zeros of ψG in D is

$$\int_{T}^{T+U} \log |\psi G(a + it)| dt/2\pi (\frac{1}{2} - a),$$

where $a < \frac{1}{2}$ and $\frac{1}{2} - a$ is small. Use is now made of

$$\int_T^{T+U} \log |\psi G(a+it)| dt \leq \frac{U}{2} \log \left(\frac{1}{U} \int_T^{T+U} |\psi G(a+it)|^2 dt\right).$$

The choice for ψ is

$$\psi(s) = \sum_{j \leq y} \frac{\mu(j) \log y/j}{j^{1/2-\alpha} \log y} \frac{1}{j^s},$$

and $y = T^{1/2}/\log^{20} T$. To compute

$$J = \frac{1}{U} \int_{T}^{T+U} |\psi G(a + it)|^2 dt$$

it is necessary to express ζ and its derivatives in terms of the approximate functional equation as done in [1], [2]. Let $R = (\frac{1}{2} - a)\log T/2\pi$. Then lengthy calculations lead to

$$J = e^{2R} \left(\frac{1}{24R} - \frac{1}{12R^2} + \frac{2}{3R^3} - \frac{3}{R^4} + \frac{6}{R^5} \right)$$
$$- \frac{R}{12} + \frac{3}{4} - \frac{29}{24R} - \frac{13}{4R^2} - \frac{20}{3R^3} - \frac{9}{R^4} - \frac{6}{R^5}$$
$$+ O\left(\frac{(\log \log T)^{10}}{\log T} \right).$$

For $R=1.1, J \leq 1.3634$. Therefore

$$\frac{1}{\frac{1}{2}-a} \int_{T}^{T+U} \log |\psi G(a+it)| dt$$
$$\leq \frac{U}{2(\frac{1}{2}-a)} \log 1.3634 = U \log T/2\pi \frac{\log 1.3634}{2R} \leq 0.1414U \log T/2\pi.$$

with R=1.1. Thus the change in arg G is at most $0.1414 U \log T/2\pi$. By Stirling's formula the change in arg $H(\frac{1}{2}+it)$ is essentially $\frac{1}{2}U \log T/2\pi$, and so the change in $\arg(HF'G)$ is at least $0.3586 U \log T/2\pi$. Since the zeros occur mod π , the number is at least $0.7172 U(\log T/2\pi)/2\pi$ which is more than 0.7 of the total number in T < t < T + U.

NORMAN LEVINSON

References

1. N. Levinson, At least one third of zeros of Riemann's zeta-function are on $\sigma = \frac{1}{2}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1013–1015.

2. N. Levinson, More than one third of zeros of Riemann's zeta-function are on $\sigma = \frac{1}{2}$, Advances in Math. (to appear).

3. E. C. Titchmarsh, *The theory of the Riemann zeta-function*, Clarendon Press, Oxford, 1951. MR 13, 741.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139