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A classical problem in differential topology is the following: Let X 
be a compact «-dimensional differentiable manifold (without boundary). 
Then compute the least integer m=m(X) such that X may be embedded 
into Rm. Usually this question is attacked as follows (see Atiyah [1]): 
(a) An upper bound for m is obtained by exhibiting explicit embeddings, 
and (b) a lower bound is obtained by certain homotopy invariants. 

The forthcoming paper [2] deals with an algebro-geometric counter­
part to the problem mentioned above: Let Z b e a nonsingular, projective 
/^-variety embedded in some projective space P% by the embedding i. 
For simplicity we assume the field k to be algebraically closed, but the 
results of [2] still hold under the weaker assumption that k is infinite. 
The main result is that the least integer m=m(X, /), such that X can be 
embedded into P™ via a projection from Pjf, is effectively computed in 
terms of the degrees of the Chern-classes of X. 

More precisely, let Xc+P^ be an «-dimensional nonsingular projective 
variety, embedded in P%. Let ci=ci(X)=ci(Çl1

X/k) e A(X) be the Chern-
classes of X, where A(X) denotes the Chow-ring of X. Consider the formal 
inverse of the alternating Chern-polynomial : 

Here f=0 for / > « . Let rf*=deg(/J with respect to the embedding i:Xc+ 

P%. In particular d0=deg(i(X))=d. Define 

BX(T) = ( | dj*} ( 2 | X ( 2 n + ^T} = B0 + BXT + • • • , 
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of which we only need 2?0, Bl9 • • • , Bn. In fact, we put 

ft=I<-'>t:-:„)(<M"r))' •*>**•• 
& = 1 for j<n9 & = 0 f o r ; > 2 n . 

DEFINITION. For all integers m the sequence (/?w, fim+l9 • • •) w ca/ferf 
*Ae rafA embedding obstruction of the embedded variety (X, /). 

In [2] the following result is proved : 

THEOREM. Ifm<N, then X can be embedded into P™ via a projection 
from PK if and only if the mth obstruction vanishes, i.e. 

(i) Gffm,/Wi,---) = (o ,o , - - - ) . 

This implies at once the well-known and classical (see E. Lluis [5]) : 

COROLLARY, m(X, i)^2n+l. 

For n=l and m = 2 we obtain the well-known genus-formula 

(2) g(X) = \(d - \){d - 2) 

which is necessary and sufficient for when the nonsingular curve X can 
be projected isomorphically onto a plane curve. For « = 2 , ra=3, we get 
that a nonsingular surface X in P^ can be embedded into Pi via a projec­
tion if and only if 

d e g ( ^ ) = (d - 4)d, 

(3) (Kx) = (d - 4)% 

Pa(X) = #d - l)(d - 2)(d - 3). 

Again d=deg(X), Kx is the canonical divisor and pa(X) the arithmetic 
genus of X. The necessity of (3) was noted by Iversen [4]. 

It should be easy to compute formulas similar to (2) and (3) in any 
dimension n by means of (1), and thus obtain a characterization (in terms 
of classical invariants like Kx, pa(X)) of those nonsingular varieties X 
in Pj? which can be projected isomorphically onto a hypersurface in P%+1. 
Of course (1) with m=n+l gives such a characterization, in terms of the 
degrees of certain monomials in the Chern-classes of X. 

Another application of the theorem is to Abelian varieties. In fact, 
the question of embeddings for Abelian varieties is resolved as follows : 
LetXc+P^be an «-dimensional Abelian variety. Then : 

(i) X can always be embedded into P%n+1 via a projection from P^; 
(ii) X can be embedded into P | n via a projection from P^vodeg(A r)= 

(iii) X cannot be embedded into Pln 1. 
2 ADDED IN PROOF. Using standard combinatorial identities, one easily checks that 
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For « = 1 , (ii) gives deg(Ar)=3 which is no surprise, and for n=2 we 
get deg(X)=10. The necessity of this condition for the embedding of a 
2-dimensional Abelian variety into P% was noted by Horrocks and Mum-
ford in [3, Theorems 5.1 and 5.2]. 

It should be noted that [2] deals only with embedded projective varieties. 
For a given projective variety X, one may ask for the least integer e=e(X) 
such that X may be embedded into J?|. If X is given as a subvarie ty of 
some P£, one may very well have m(X)>e(X). Nevertheless, calculation 
of m(X) can be used to obtain upper and lower bounds for e{X), see for 
example the computation for Abelian varieties referred to above. In order 
to compute e(X), one must find the projective embeddings i of X for which 
m(X,i) is minimal, i.e., for which the embedding obstruction is as nice 
as possible. We hope to return to this question later. 
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