ADDITIVE COMMUTATORS BETWEEN 2×2 INTEGRAL MATRIX REPRESENTATIONS OF ORDERS IN IDENTICAL OR DIFFERENT QUADRATIC NUMBER FIELDS

BY OLGA TAUSSKY¹

Communicated March 18, 1974

The following theorem holds:

THEOREM 1. Let A, B be two integral 2×2 matrices. Let the characteristic roots of A be α , α' and let the characteristic roots of B be β , β' , all assumed irrational. Then the determinant of

$$(*) L = AB - BA$$

is a negative norm in both $Q(\alpha)$, $Q(\beta)$.

REMARK. The proof of this theorem gives an algorithmic procedure for expressing an integer as a norm in a quadratic field.

PROOF. There exists² an integral matrix S with the property that $S^{-1}AS$ is the companion matrix

$$\begin{pmatrix} 0 & 1 \\ -\det A & \operatorname{tr} A \end{pmatrix}$$

of A. Since the companion matrix has the characteristic vectors $(1, \alpha)'$, $(1, \alpha')'$ the matrix $T = \begin{pmatrix} 1 & 1 \\ \alpha & \alpha' \end{pmatrix}$ has the property that $T^{-1}S^{-1}AST = \begin{pmatrix} \alpha & \alpha' \end{pmatrix}$. Apply then the same similarity also to B and to L, i.e. to (*). Let the outcome of this be denoted by

(**)
$$\binom{\alpha}{\alpha'}B^{(\alpha)}-B^{(\alpha)}\binom{\alpha}{\alpha'}=L^{(\alpha)}=\binom{0}{l_{3}}\binom{1}{l_{3}};$$

then l_2 , l_3 are elements in $Q(\alpha)$.

Apply the similarity defined by T^{-1} to $L^{(\alpha)}$. The result must be rational. A straightforward computation using the fact that α , $\alpha' = -\frac{1}{2}(\operatorname{tr} A \pm \sqrt{m})$, with $m = (\operatorname{tr} A^2 - 4 \operatorname{det} A)$, shows that

$$\binom{1}{\alpha} \begin{pmatrix} 1 & 1 \\ l_3 & 0 \end{pmatrix} \binom{\alpha' & -1}{-\alpha & 1} \frac{1}{\alpha' - \alpha} = -\frac{1}{\sqrt{m}} \binom{\alpha' l_3 - \alpha l_2}{\alpha'^2 l_3 - \alpha^2 l_2} \begin{pmatrix} l_2 - l_3 \\ -\alpha' l_3 + \alpha l_2 \end{pmatrix}.$$

AMS (MOS) subject classifications (1970). Primary 15A36, 12A50, 10C10.

Copyright @ American Mathematical Society 1974

¹ This work was carried out in part under an NSF contract.

² For further information in the number theoretic case on this see [1].

This implies

(1)
$$l_2 - l_3 = r_1 \sqrt{m}$$
, with r_1 rational,
 $-m^{-1/2} [\frac{1}{2} (\text{tr } A - \sqrt{m}) l_3 - \frac{1}{2} (\text{tr } A + \sqrt{m}) l_2]$
(2) $= -m^{-1/2} [\frac{1}{2} \text{ tr } A (l_3 - l_2) - \frac{1}{2} \sqrt{m} (l_3 + l_2)]$
 $= \text{rational.}$

In virtue of (1) we obtain

(3)
$$l_2 + l_3 = r_2$$
, with r_2 rational

From (1), (3) follows

$$l_2 = \frac{1}{2}(r_2 + r_1\sqrt{m}), \qquad l_3 = \frac{1}{2}(r_2 - r_1\sqrt{m}).$$

Hence l_2 , l_3 are conjugate elements in $Q(\alpha)$. Since

$$\det\begin{pmatrix} 0 & l_2\\ l_3 & 0 \end{pmatrix} = -l_2 l_3 = \det L,$$

the theorem follows if it is further observed that AB-BA = -(BA-AB)and that det(AB-BA) = det(BA-AB).

THEOREM 2. Let Z be a matrix of the form $\binom{0}{m} \binom{1}{0}$ when m is an integer not a square. If Z is expressed in the form XY - YX, where X, Y are rational matrices,³ then the characteristic roots of X lie in the field $Q(\sqrt{M})$ where M is the norm of an element in $Q(\sqrt{m})$.

It can further be shown that M can be chosen as an arbitrary norm in $Q(\sqrt{m})$. Combining this fact with Theorem 1 leads to the following result:

THEOREM 3. Every negative norm in a quadratic field can be represented as det(AB-BA).

EXAMPLES.
1.
$$A = \begin{pmatrix} 0 & 1 \\ m & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ n & 0 \end{pmatrix}, AB - BA = \begin{pmatrix} n-m & 0 \\ 0 & m-n \end{pmatrix}.$$

2. $A = \begin{pmatrix} 0 & 1 \\ m & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix},$
 $AB - BA = \begin{pmatrix} n-m+mn & -2n \\ 2mn & -n+m-mn \end{pmatrix},$
 $\det(AB - BA) = -[(n-m+mn)^2 - 4mn^2]$
 $= -[(m-n+mn)^2 - 4m^2n].$

³ This is always possible by a theorem of Shoda.

886

3. A random choice.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix}.$$

A has characteristic polynomial x^2-5x-2 and roots in $Q(\sqrt{33})$. B has characteristic polynomial x^2-6x+2 and roots in $Q(\sqrt{7})$. The commutator AB-BA has determinant

$$-58 = -\operatorname{norm}(31 + \sqrt{(33)})/4 = -\operatorname{norm}(11 + 3\sqrt{7}).$$

REMARK. Zassenhaus observed that for matrices A with $A^2 = \det A \cdot I$ the relation AL + LA = 0 holds. This can be generalized to the fact that the operator defined via A on the space of 2×2 matrices has the characteristic vector L with respect to the characteristic root trace A.

Reference

1. O. Taussky, A result concerning classes of matrices, J. Number Theory 6 (1974), 64-71.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109

1974]