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In recent years extensive work has been done on the Vitali-Hahn-Saks 
theorem and its relatives. Seever [13] considered the question of extending 
the Vitali-Hahn-Saks theorem to the case where the domain is a Boolean 
algebra which is not necessarily sigma complete. Brooks and Jewett [2] 
established results for a strongly bounded map defined on a Boolean sigma 
algebra of sets with values in a Banach space. Further generalizations to 
group-valued set functions have been studied by the Poznan school (see 
[5], [6], [7], [8], [9], [11], [12]). The work of all these authors is generalized 
herein to the case of strongly bounded maps defined on Boolean algebras 
with the Seever property and taking values in a Banach space. Some 
applications other than those considered herein and the final generalization 
to the group-valued case can be found in [10]. 

I wish to thank Professor J. Diestel for his advice and encouragement in 
the preparation of this paper. Also, I wish to express my gratitude to 
Professors R. E. Huff and J. J. Uhl, Jr. for many helpful discussions. 

1. Notation and definitions. A Boolean algebra S3 has the property (I) 
if and only if for any sequences {xn} and {yn} in 8$ satisfying xn^ym for 
all n, m, there exists x e l such that xn^x^yn for all n. This condition 
is equivalent to the condition: given any sequences {an} and {bn} in 8ÏÏ 
satisfying anAam=0, bnAbm=0 for nj^m and anAbm=0 for all n, m, there 
exists an element am 8$ such that a^an and bnAa=0 for all n. 

Unless signified otherwise, 8% will be used in this paper to denote a 
Boolean algebra with the property (I). The symbol X denotes a Banach 
space and X* its Banach space dual. 

A finitely additive fx:8S->X is bounded whenever there exists M>0 
such that 11/̂ )11= M for all b e 8fl\ ju, is said to be strongly bounded if 
IIMOII— 0̂ as n->oo for each disjoint sequence el9 • • • , en, • • • of elements 
in 83. A sequence jun:&->X, n=l, 2, • • • , is uniformly strongly bounded 
if for each disjoint sequence {en}<^é%, limw supk\\ju.k(en)\\=0. By grouping 
it is easy to see that if// is strongly bounded and {en}<^ 88 is disjoint, then 
2*=i M^n) is a n unconditionally convergent series in X. A map ju, : 8S-+X is 
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countably additive if for every disjoint sequence {en}<^ 88 with \Jn en e 38 y 

the equality ju,(\Jn ^ J = 2 n l^(en) holds. The semivariation of [A on b e &, 
denoted by ||^||(ft), is defined to be sup{||^(û)|| :a e 38, a^b}. It is easily 
shown that ii\38-+X is strongly bounded if and only if ||^|| :<^->-[0, oo) 
is strongly bounded (though \fi\ need not be additive). 

2. Main results. 

THEOREM 1. Let jun : 38-^X be finitely additive and strongly bounded for 
n=l, 2, • • • . If limw jun(e)=0for each e e &, then {[Jin:n e N} is uniformly 
strongly bounded. 

PROOF. Suppose not. Then there exists a sequence {en} of disjoint 
elements of «^, a number £>0 , and a sequence m 1 <m 2 <m 3 <* • • of 
positive integers (to simplify notation, assume mn—n) such that for each 
neN, \\/An(e^\\>4e. 

Let / i = l . Partition the set N\{1} into an infinite number of infinite 
disjoint sets 7r*, n=l, 2, 3, • • •. Utilizing property (I) we can choose a 
sequence/*, n = 1, 2, • • • , of disjoint elements in 38 such that: 

(ai) fn^i f o r a11 * e ^ n = l , 2, • • • ; 
( b i ) / > ^ = 0 , n = l , 2 , ••• ; 

(Cl) ƒ J A * , = 0 for all j e (JV\{l})\(UjLi *l). 
As l l /^JK/n)-^ (n->oo) there exists a n ^ e i V such that U ^ J K / ^ X e . 
Choose / 2

e 7 r n 1 such that i2>h and ||^a(e<1)||<«/4. Partition the set 
7ri\{/2} into an infinite number of infinite disjoint sets TT\, n=l, 2, • • •. 
Again by property (I) there exists a sequence ƒ £, « = 1 , 2, • • • , of disjoint 
elements in 38 such that 

(a2) /»^e< for all i e TT*, n = l , 2, • • • ; 
( b 2 ) / > f e 1 V ^ ) = 0 , n = l , 2 , - - - ; 

(c2) / > ^ = 0 for all j e (< \{ i 2 }) \ (UlU *?). 
There exists an integer n2eN such that \\ju>h\\(fl2)<€. Choose /3G7T^2 

such that ï8>ïa and 11/^,(^)11, ll^3fe2)ll<e/8. Proceed in this fashion to 
obtain a sequence ƒ ̂ fc=/fc, k= 1, 2, • • • , of elements of 38 and a sequence 
h<i2<' ' ' of positive integers such that: 

(I) fn^eik, k>n; 
( 2 ) / w A ^ = 0 , l < f c ^ n ; 
(3) | | ^ J ( / w ) < e , n = l , 2 , . . . ; 
(4) ||iu,X)||<e/2M^fc<«; 
(5) | | ^ ^ , w ) | | > 4 e , « = l , 2 , . . . . 
Let /2w=/nV(VLi ^ ) . Then hn^eik for all «, fc. Choose ce 38 such that 

(6) hn 2: c 2: ein for all «. 
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Noticing that /it%(c)='tti%(hn-etf)--fttK(hn-c)+/it%(ett), we have 

KOOII ^ K(«JII - K ( * . - «Oil - IK,**. - «Oil 

- ( , , [ ( ƒ » V ( W , ) ) A C']||, 

which by (2) is 

£ K(«JII - lft.(/. A <n)n 

- | |^„rV(e^ A e'in)\l - \\pin(fn A c')|| - L J V t e . A O i l . 
II Lft=i JII II Lfc=i JII 

Applying (2), (6) and the disjointness of the e< 's yields 

^ K(OII - K(/*)ll 
- K(^H K(OI I - KO. A on, 

which by (5), (3) and (4) is >As-s-{n-\)ej2n-e^e. Since \\f*in(c)\\>e 
holds for infinitely many n9 limw /JW(C)-I-»0, a contradiction. 

The proofs of some of the corollaries yielded by Theorem 1 are, for the 
most part, minor alterations to proofs presented elsewhere; in these cases 
the appropriate references are given. 

COROLLARY 1 [2, COROLLARY 1.2]. Let jun : &t-*X be finitely additive and 
strongly bounded for n=1, 2, • • • . If limw ftn(é)=ju,(e) exists for each e e l , 
then p is strongly bounded and the ftn, « = 1, 2, • • •, are uniformly strongly 
bounded. 

COROLLARY 2. Let fjLn\â#-+X be countably additive for »=1 , 2, • • •. 
If limn /u>n(e)=ju(e) exists for each e e âiï, then fx is countably additive and 
the //n, n = l , 2, • • • , are uniformly countably additive. 

COROLLARY 3 [3, THEOREM 1.6]. Let X be any separable Banach space 
and let /u : 38-+X be bounded and finitely additive. Then [i is strongly bounded. 

Another corollary is the following result proved differently by N. J. 
Kalton in an unpublished manuscript. 

COROLLARY 4. Let X be a weakly compactly generated Banach space 
and let JLC : 38-+X be bounded and finitely additive. Then [À is strongly 
bounded. 
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PROOF. Let {en} be a disjoint sequence in 88 and let [ft(en)]=X0 denote 
the closed linear span of {ju(en) :n e N}. Then X0 is a separable subspace of 
the weakly compactly generated space X; hence by a result of Amir and 
Lindenstrauss [1, Lemma 4], there is a separable subspace Y of X such 
that X0 <= F and Fis complemented in X. Suppose P : X-+ Fis the projection. 
Then Corollary 1.2 yields P o ju(en)->09 n-^co. But P o //(en)=^(ew) for 
each n. Therefore, JU is strongly bounded. 

COROLLARY 5 [4, COROLLARY 5]. Let yin : 38-+X be strongly bounded for 
7 i = l , 2 , • • • . Suppose /u(e)=weak-limitnjun(e) exists for each eeâiï. 
Then JU is strongly bounded. 

PROOF. The boundedness of ju follows from the Banach-Steinhaus 
theorem and Corollary 1.1 applied to the functions f[xn, f\x where ƒ e X*. 
For each n let Bn=jun(&) and let F be the closed linear span of \Jn ^w 
By the definition of ^ and Mazur's theorem we have ix{8$)^ F. We claim 
that F is weakly compactly generated. 

For each n, let Mn=sup{\\jun(b)\\:b e 88). Let B= \Jn Bj(n • Mn). The 
closed linear span of B is F and B is relatively weakly compact. To see the 
last assertion, let {yn} be a sequence in B. Since each /un is strongly 
bounded, Bn9 and hence Bnj{n • Mn), is relatively weakly compact [14]. So 
if {yn} returns infinitely often to one of the Bj(n • Afn)'s, we can extract 
a weakly convergent subsequence. If {yn} does not return infinitely often 
to any Bnj(n • Mn) then there exist strictly increasing sequences (mk) and 
(nk) of positive integers such that ymjc e BnJ(nk • Mnj) for each k. It follows 
that ||j>mJ|^l/7ifc-~*0 a s k-*oo. Thus {jn} has a norm convergent sub­
sequence. 

With the proof proceeding as in [2, Theorem 3] we have the following 
Vitali-Hahn-Saks theorem. 

THEOREM 2. Let fin : â§-+X be finitely additive and strongly bounded, for 
7i=l , 2, • • • . Suppose v is a nonnegative monotone set function defined on 
8S and each jun<^v. Assume that limw jun(e) exists for each e e 88. Then 
limV(e)_^oll/^n(^)ll==:ö uniformly in n. 
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