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A subset X of a discrete abelian group G is said to be a Sidon set if 
every bounded complex-valued function on X is the restriction to X of 
a Fourier-Stieltjes transform on G. In this article we give an affirmative 
answer to a question of J.-E. Bjork [1] and N. Th. Varopoulos [6]. 

THEOREM 1. Let X be a symmetric Sidon subset of G not containing 
0G. Then every bounded hermitian function on X is the restriction to X of a 
positive-definite function on G. 

In the terminology of Edwards, Hewitt and Ross [2], the set X has the 
Fatou-Zygmund property. We refer the reader to this article and to Ross 
[7] for a deeper understanding of the content of Theorem 1. The proof 
of Theorem 1 uses the technique of [3] but the presentation we give is 
akin to that of [4]. Unexplained notations and definitions may be found 
in [5]. 

For technical reasons we should like X to be a finite set. Thus we shall 
actually prove the following result. 

THEOREM 2. For all OL ( 0 < a ^ l ) there is a constant C(a) such that for 
every finite symmetric Sidon (a) subset X of G not containing 0o and every 
hermitian function </> on X with \\<f>\\aû^l> there exists /u a positive measure 
on G with | | ^ | | ^^C(a ) such that /2 |x=^-

It is an easy consequence of Theorem 2 that the analogous statement 
with the word finite deleted holds. Thus Theorem 1 follows from Theorem 
2. From now on let X be as in Theorem 2. 

We fix n to be an even integer greater than or equal to four and define 
Q to be the finite group of hermitian mappings from X to the complex 
wth roots of unity under pointwise multiplication. If U denotes the set of 
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all hermitian functions of X into the closed unit disc we have 

(*) U ç sec(77» • co(Q) 

where co(Q) denotes the real-affine convex hull of £2. This is not true if 
n=2 or if n is odd and X contains elements of order two. 

The next lemma is a modification of the convolution device lemma of 
[4]. 

LEMMA 3. There exist functions g, g*9 g+ and g~ on GxQ, having the 
following properties 

(1) g=g+-g~>g*=g++g~> 
(2) g a is positive definite on GVco eQ,, 
(3) g(x, co)=co(x) Vco e £2, \fx e X, 
(4) llgaiB(G>^*-"Vû>eQ, 
(5) | | g : i U , n , ^ a - 2 V x 6 G . 

PROOF. Since X is Sidon (a) there exist functions f^ (co eü.) on G 
such that fo>(x)=oo(x) Vœ e JQ, Vx e X; | | / « J B C G ) ^ * " 1 VCO e £L We may 
assume that each f^ is hermitian on G for if not it suffices to throw away 
its skew-hermitian part. Thus we may write /«—/i—ƒ« where ƒ * is 
positive definite on G. Now define 

g±±(x, a>) = ƒ ƒ * ( * , coX^f^x, A) drj(X) 

where rj is the invariant probability measure on Q. We set g+=g+++g—, 
g-=g+~+g~+, g=g+~g~ and g*=g++g- . Conditions (l)-(3) are 
easily checked and (4)-(5) follow as in [4]. 

Let H denote the dual group of Q, that is, the Z(«)-module generated 
by X and the relations x+(—x)=0 (xeX). The negation mapping on 
X induces inversion on Q 

co(—x) = co(x) = co-Hx) 

which in turn induces negation on H. The natural injection j of X into 
i f given by (j(x), œ) = œ(x) thus satisfies j (—x)= —j (x). A finite subset Y 
of a discrete abelian group F is said to be symmetric «-independent if and 
only if 

(a) Y is symmetric. 
(b) If m:Y-+Z and 2 v e F m(y) 'y=0F then m(y)—m(—y)=0 mod n 

for all j G Y and ra(y)=0 mod 2 for all ƒ e 7 with 2y=0F. It is easy to 
prove that the subsets j(X) and graph(/)=={(jt,y(*)); x G X} are symmetric 
«-independent in H and G X /f respectively. 
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LEMMA 4. Let 0 < s ̂  1 and suppose that Y is a symmetric n-independent 
subset of F. There exist functions p+', p~, pe and p° on F such that 

(1') p+=pe+pO,p-=pe-po; 

(2') p± is positive definite on F; 
(3')p»(y)=\l2eVyeY; 
(4') ll/^IUm-1; 
(5')\p°(y)\^e*VyeF\{0p}. 

The letters e and o stand for even and odd. 

PROOF. Let Q denote the quotient of Y induced by the equivalence 
relation yx^y2 if a n d only if either y±=y2 or j i = — j 2 - F ° r ? G Ô a n d 
X e / we define 

«.*&) = i±;2*O0 
^ yea 

and the cosine Riesz products p* are defined by 

QGQ 

The definition of/?e and/?0 is given by (1'). The verification of (2'), (3') 
and (4') is routine—see for example [5, p. 124]. To prove (5') we establish 
by direct calculation that 

pe(z) = 2(^r r d ( i e >cB(z) 
where the summation is over all even subsets R of Q and CB(z) is the num­
ber of partial section maps y : R-+ Y for which z=^qeR y{q). The definition 
of symmetric «-independence ensures that for each fixed z, CR(z) is 
nonzero for at most one value of R. Thus 

|p#(*)l ^ sup(|£)card^ )C jR(z). 

Since card(?)^2 for all q in Q it follows that C22(z)^2card(i2). Clearly 
C0(z)=O for ZT^OF. Recalling that the supremum is only over sets of 
even cardinality we have (5')-

PROOF OF THEOREM 2. We use the notation of Lemmas 3 and 4 
where F=graph(/) and F=G xH. We define 

s(x, co) = ƒ [(p+f(x, coX-l)g+(x, X) + QT)A(x, a i r ^ g - f o A)] drj(X) 

where A denotes the Fourier transform in the Q, H duality only. By (2) 
and (2'), s^ is positive definite in G for each œ in fi. By (4) and (4'), 
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lkJJi?<a)=2a~2 Vco e Ci. Now we rewrite s. 

s(x9 co) = ƒ(p°f(x, co?Tl)g(x9X) drj(X) + ƒ(p*)\x, coX-l)g*(x9 X)dn{X) 

= s°(x, co) + se(x, co). 

By (3) and (3'), s°(x, co)=*\eco(x) Vco e Q, VJC G X. By (5), (5') and since 
0Ö <£ X, \se(x, co)\ <e2a~2 Vco e £î, Vx e JT. Hence 

|j(x, co) - %eco(x)\ ^ eaora Vco e Ü, Vx e X. 

Now by real-afBne convexity and the condition (*) we have that for each 
element </> of U there exists a positive measure [i onô such that 

\\/A\\M <l 4c-1a-a sec(7r//i), 

H/2U — ̂ lloo ^ 2eoc-2 sec(7r//î). 

Now select e=la2cos(7r/«). Since / J |x- -^ is again hermitian on X, 
Theorem 2 follows by iteration. The constant C(oc) may be taken to be 
32a~4. 
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