THE FATOU-ZYGMUND PROPERTY FOR SIDON SETS¹

BY S. W. DRURY

Communicated by Kenneth A. Ross, October 10, 1973

A subset X of a discrete abelian group G is said to be a Sidon set if every bounded complex-valued function on X is the restriction to X of a Fourier-Stieltjes transform on G. In this article we give an affirmative answer to a question of J.-E. Bjork [1] and N. Th. Varopoulos [6].

Theorem 1. Let X be a symmetric Sidon subset of G not containing 0_G . Then every bounded hermitian function on X is the restriction to X of a positive-definite function on G.

In the terminology of Edwards, Hewitt and Ross [2], the set X has the Fatou-Zygmund property. We refer the reader to this article and to Ross [7] for a deeper understanding of the content of Theorem 1. The proof of Theorem 1 uses the technique of [3] but the presentation we give is akin to that of [4]. Unexplained notations and definitions may be found in [5].

For technical reasons we should like X to be a finite set. Thus we shall actually prove the following result.

THEOREM 2. For all α $(0 < \alpha \le 1)$ there is a constant $C(\alpha)$ such that for every finite symmetric Sidon (α) subset X of G not containing 0_G and every hermitian function ϕ on X with $\|\phi\|_{\infty} \le 1$, there exists μ a positive measure on \hat{G} with $\|\mu\|_{M} \le C(\alpha)$ such that $\hat{\mu}|_{X} = \phi$.

It is an easy consequence of Theorem 2 that the analogous statement with the word finite deleted holds. Thus Theorem 1 follows from Theorem 2. From now on let X be as in Theorem 2.

We fix n to be an even integer greater than or equal to four and define Ω to be the finite group of hermitian mappings from X to the complex nth roots of unity under pointwise multiplication. If U denotes the set of

AMS (MOS) subject classifications (1970). Primary 43A25, 43A35.

Key words and phrases. Sidon set, Fatou-Zygmund set, interpolation set, Fourier-Stieltjes transform, positive definite function.

¹ The research for this article was supported by the National Research Council of Canada.

all hermitian functions of X into the closed unit disc we have

$$(*) U \subseteq \sec(\pi/n) \cdot \cos(\Omega)$$

where $co(\Omega)$ denotes the real-affine convex hull of Ω . This is not true if n=2 or if n is odd and X contains elements of order two.

The next lemma is a modification of the convolution device lemma of [4].

LEMMA 3. There exist functions g, g^* , g^+ and g^- on $G \times \Omega$ having the following properties

- (1) $g=g^+-g^-$, $g^*=g^++g^-$,
- (2) g_{ω}^{\pm} is positive definite on $G \forall \omega \in \Omega$,
- (3) $g(x, \omega) = \omega(x) \forall \omega \in \Omega, \forall x \in X$,
- $(4) \|g_{\omega}^{\pm}\|_{B(G)} \leq \alpha^{-2} \forall \omega \in \Omega,$
- (5) $\|g_x^*\|_{A(\Omega)} \leq \alpha^{-2} \ \forall x \in G.$

PROOF. Since X is Sidon (α) there exist functions f_{ω} ($\omega \in \Omega$) on G such that $f_{\omega}(x) = \omega(x) \ \forall \omega \in \Omega$, $\forall x \in X$; $\|f_{\omega}\|_{B(G)} \leq \alpha^{-1} \ \forall \omega \in \Omega$. We may assume that each f_{ω} is hermitian on G for if not it suffices to throw away its skew-hermitian part. Thus we may write $f_{\omega} = f_{\omega}^{+} - f_{\omega}^{-}$ where f_{ω}^{+} is positive definite on G. Now define

$$g^{\pm\pm}(x,\omega) = \int f^{\pm}(x,\omega\lambda^{-1})f^{\pm}(x,\lambda) d\eta(\lambda)$$

where η is the invariant probability measure on Ω . We set $g^+=g^{++}+g^{--}$, $g^-=g^{+-}+g^{-+}$, $g=g^+-g^-$ and $g^*=g^++g^-$. Conditions (1)-(3) are easily checked and (4)-(5) follow as in [4].

Let H denote the dual group of Ω , that is, the Z(n)-module generated by X and the relations x+(-x)=0 $(x \in X)$. The negation mapping on X induces inversion on Ω

$$\omega(-x) = \overline{\omega(x)} = \omega^{-1}(x)$$

which in turn induces negation on H. The natural injection j of X into H given by $\langle j(x), \omega \rangle = \omega(x)$ thus satisfies j(-x) = -j(x). A finite subset Y of a discrete abelian group F is said to be symmetric n-independent if and only if

- (a) Y is symmetric.
- (b) If $m: Y \to \mathbb{Z}$ and $\sum_{y \in Y} m(y) \cdot y = 0_F$ then $m(y) m(-y) \equiv 0 \mod n$ for all $y \in Y$ and $m(y) \equiv 0 \mod 2$ for all $y \in Y$ with $2y = 0_F$. It is easy to prove that the subsets j(X) and graph $(j) = \{(x, j(x)); x \in X\}$ are symmetric n-independent in H and $G \times H$ respectively.

LEMMA 4. Let $0 < \varepsilon \le 1$ and suppose that Y is a symmetric n-independent subset of F. There exist functions p^+ , p^- , p^e and p^o on F such that

- (1') $p^+=p^e+p^o, p^-=p^e-p^o;$
- (2') p^{\pm} is positive definite on F;
- (3') $p^{o}(y)=1/2\varepsilon \ \forall y \in Y;$
- $(4') \|p^{\pm}\|_{B(F)} = 1;$
- $(5') |p^e(y)| \leq \varepsilon^2 \forall y \in F \setminus \{0_F\}.$

The letters e and o stand for even and odd.

PROOF. Let Q denote the quotient of Y induced by the equivalence relation $y_1 \sim y_2$ if and only if either $y_1 = y_2$ or $y_1 = -y_2$. For $q \in Q$ and $\chi \in \hat{F}$ we define

$$a_q^{\pm}(\chi) = 1 \pm \frac{\varepsilon}{2} \sum_{y \in q} \chi(y)$$

and the cosine Riesz products p^{\pm} are defined by

$$(p^{\pm})^{\hat{}}(\chi) = \prod_{q \in Q} a_q^{\pm}(\chi).$$

The definition of p^o and p^o is given by (1'). The verification of (2'), (3') and (4') is routine—see for example [5, p. 124]. To prove (5') we establish by direct calculation that

$$p^{e}(z) = \sum_{n} (\frac{1}{2}\varepsilon)^{\operatorname{card}(R)} C_{R}(z)$$

where the summation is over all even subsets R of Q and $C_R(z)$ is the number of partial section maps $y: R \to Y$ for which $z = \sum_{q \in R} y(q)$. The definition of symmetric n-independence ensures that for each fixed z, $C_R(z)$ is nonzero for at most one value of R. Thus

$$|p^e(z)| \leq \sup(\frac{1}{2}\varepsilon)^{\operatorname{card}(R)} C_R(z).$$

Since $\operatorname{card}(q) \leq 2$ for all q in Q it follows that $C_R(z) \leq 2^{\operatorname{card}(R)}$. Clearly $C_{\varnothing}(z) = 0$ for $z \neq 0_F$. Recalling that the supremum is only over sets of even cardinality we have (5').

PROOF OF THEOREM 2. We use the notation of Lemmas 3 and 4 where Y=graph(j) and $F=G\times H$. We define

$$s(x, \omega) = \int [(p^{+})^{\hat{}}(x, \omega \lambda^{-1})g^{+}(x, \lambda) + (p^{-})^{\hat{}}(x, \omega \lambda^{-1})g^{-}(x, \lambda)] d\eta(\lambda)$$

where $\hat{}$ denotes the Fourier transform in the Ω , H duality only. By (2) and (2'), s_{ω} is positive definite in G for each ω in Ω . By (4) and (4'),

 $||s_{\omega}||_{B(G)} \leq 2\alpha^{-2} \ \forall \omega \in \Omega$. Now we rewrite s.

$$s(x,\omega) = \int (p^{o})^{\hat{}}(x,\omega\lambda^{-1})g(x,\lambda) d\eta(\lambda) + \int (p^{e})^{\hat{}}(x,\omega\lambda^{-1})g^{*}(x,\lambda) d\eta(\lambda)$$
$$= s^{o}(x,\omega) + s^{e}(x,\omega).$$

By (3) and (3'), $s^o(x, \omega) = \frac{1}{2} \varepsilon \omega(x) \ \forall \omega \in \Omega, \ \forall x \in X$. By (5), (5') and since $0_G \notin X$, $|s^e(x, \omega)| \le \varepsilon^2 \alpha^{-2} \ \forall \omega \in \Omega, \ \forall x \in X$. Hence

$$|s(x, \omega) - \frac{1}{2}\varepsilon\omega(x)| \le \varepsilon^2\alpha^{-2} \quad \forall \omega \in \Omega, \forall x \in X.$$

Now by real-affine convexity and the condition (*) we have that for each element ϕ of U there exists a positive measure μ on \hat{G} such that

$$\begin{split} \|\mu\|_{M} & \leq 4\varepsilon^{-1}\alpha^{-2}\sec(\pi/n), \\ \|\hat{\mu}|_{X} - \phi\|_{\infty} & \leq 2\varepsilon\alpha^{-2}\sec(\pi/n). \end{split}$$

Now select $\varepsilon = \frac{1}{4}\alpha^2 \cos(\pi/n)$. Since $\hat{\mu}|_X - \phi$ is again hermitian on X, Theorem 2 follows by iteration. The constant $C(\alpha)$ may be taken to be $32\alpha^{-4}$.

REFERENCES

- 1. L.-A. Lindahl and F. Poulsen, *Thin sets in harmonic analysis*, Problem 5.5, p. 67, Lecture Notes in Pure and Appl. Math., Dekker, New York, 1971.
- 2. R. E. Edwards, E. Hewitt and K. A. Ross, Lacunarity for compact groups. III, Studia Math. 44 (1972), 429-476.
- 3. S. W. Drury, Sur les ensembles de Sidon, C.R. Acad. Sci. Paris Sér. A-B 271 (1970), A162-A163. MR 42 #6530.
- 4. ——, Unions of sets of interpolation, Conference on Harmonic Analysis, Maryland, Lecture Notes in Math., no. 266, Springer-Verlag, New York, 1972, pp. 23-33.
- 5. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.
- 6. N. Th. Varopoulos, Seminar on sets of interpolation, Mittag-Leffler Institute, 1969-70 (multilith).
 - 7. K. A. Ross, Fatou-Zygmund sets, Proc. Cambridge Philos. Soc. 73 (1973), 57-65.

DEPARTMENT OF MATHEMATICS, McGILL UNIVERSITY, MONTREAL, QUEBEC, CANADA