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i%\ dxtdx, £ i 3x< 

be defined on an open set ü c Rn. We consider solutions u=u(x) e C2(£ï)n 
C(ù) of Lu^.0 which attain their maximum value M at P, a characteristic 
boundary point of £1. 

PROPAGATION SET. (See [3] and [1].) Let the diffusion vector field 
ocfc(X) be the kth column vector of the nxn matrix a(x), where a2=tf, 
and let the drift vector field f}(x) be defined by Pi=bi—^j^1{aij)Xi9 

i = l , • • • , n. Assume that a1, a2, • • • , an, j8 e C1^), where # ç P n is 
open and Ü£ 2?. For P e ôQ9 the propagation set S(P9 CÏ) is generated by 
segments of trajectories in CI of vector fields Xop+X1aL1+X2cn2+' • • + 
ŵ<*w> ^o=0, where the scalar functions AA.=Afc(̂ :) e C1, &=0, 1, • • • , n. 
S(P9 Q) is the closure of S(P9 Q) in D. 

CURVATURE CONDITION. Let P eô£l be a characteristic boundary 
point, that is, va(P)v~09 where v is the unit inner normal to ÔQ, at P. 
Then mfc(P)=0 for each k9 A:=l, • • • , n. Let n * be the plane of oc*(P) 
and r through P. In this plane, the cross-section of ôQ, and the projection 
of the trajectory of afc through P are curves which are perpendicular to v 
at P. Let the curvatures of these curves at P be rk9 for the sectional curva­
ture of ôQ9 and ak9 for the 'shadow curvature' [4] of the trajectory of 
afc. Finally, define the 'excess curvature' pk to be the difference rfc—ak. 

LEMMA. / J V - J J U P*|afc|a=*v-2£-iT*la*la *' p- ( r / ^ ^ ^ ö r 6 ö ^ r 

those kfor which a*(P)^0.) 

For the following results to hold, the curvature condition fiv— 
2»Li />/k|afc|2>0 must be satisfied at P. 
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Theorems. Theorem 1 below generalizes a result of Friedman [2, 
Theorem 1] for parabolic inequalities. In addition to generalizing Fried­
man's curvature condition, we assume that the solution of Lu^.0 is of 
class C2 near P, and thereby can dispense with his other conditions. 

THEOREM 1. Let P e ô£l be a characteristic boundary point and let 
fiv-2Li picWk\2>Q hold a* p- If u(P)=M^u(x) for all xeS(P,Q,), 
if Lu^O on S(P, Q), and if u e C2 near P, then (a) D0u(P)=D1u(P)= 
D2u(P) = - - - = Dnu(P)=0 and ^k=1DkDku(P)=0, and (b) there exists a 
point Q in CI such that u(Q)=M and Q e S(P, Ü). (Here D0 (Dk) denotes 
differentiation along a drift (diffusion) trajectory, and DkDku is the second 
derivative along the kth diffusion trajectory.) 

THEOREM 2. If the above hypotheses are strengthened to u(P)=M^. 
u(x) for all x e Q and Lu^.0 in Q,, then to conclusion (a) one may add that 
DTu(P)=0 for any direction r which points into Q, that is, such thatrv>0. 

Counterexamples show that the curvature condition is best possible. 
That is, if/8r —2*=i Pfcla12=°> t h e theorems need not hold. 

COROLLARY. If P e Cl is in a level surface ofu,a solution of Lu=0 in 
S(P, £i), and the normal v to this surface at P is defined and satisfies va(P)v= 
0, then /^=2fc=i Pkl^l2 at P> where the excess curvatures pk are calculated 
using the sectional curvatures rk of the level surface. 

When the assumption that u is of class C2 near P is dropped, it can only 
be shown that if u<M near P, then DTu(P)<0 when r points into Q. 
This may appear to violate the previous results, which show that DTu=0. 
However, the previous theorems show that if u is C2 near P, then it is 
impossible to satisfy the hypothesis that w<M near P. 

THEOREM 3. Let PeôQ be a characteristic boundary point and let 
£?>-2t=iPfc|<xT>0 hold at P. If u(P)=M>u(x) for all xeS(P,Q)9 

and ifLu^.0 on S(P, £1), then DTu(P)<0for any r which points into S(P, Q) 
and into Q. 

THEOREM 4. If the hypotheses of the last theorem are strengthened to 
u(P)=M>u(x) for all x e Q and Lu^.0 in CI, then the conclusion is that 
DTu(P)<0for any r which points into Q.. 

In his 1970 paper, Hill [3] presented two theorems (2 and 2') of the 
form of Theorems 3 and 4 above. As shown by counterexamples, Hill's 
theorems are incorrect for characteristic boundary points because he 
does not include the curvature condition. These examples also show that 
that curvature condition is best possible in Theorems 3 and 4. 

Examples. The two following examples2 illustrate the content of the 
above theorems. 

Suggested by Professor James Ralston. 
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EXAMPLE 1. Let £l={l<x2+y2<4}^R2 and let Lu=uxx+x\y. 
Then the points (0, ±1) and (0, ±2) are characteristic boundary points. 
For each one of these points P, S(P, Q)=Q. At P = ( 0 , ±1) , bv— 
r1 |a1 |2=(0, 0)(0, ± l ) - ( - l ) ( l ) = l > 0 . Let u be a function that satisfies 
Lu^.0 on £2, and that attains its maximum value, M, on Q, at P. By 
Theorem 1, if u is of class C2 near P, then w must attain its maximum 
value at an interior point of Ü. Therefore, (by Redheffer [4, Theorem 2]) 
u is constant throughout Q. Thus, if u were not constant, it could not be 
of class C2 near P. Such a solution would have negative inward derivatives 
at P, by Theorem 4 applied to Q*=QnN, where TV is a neighborhood of 
P such that H < M in Q*. At P = ( 0 , ±2) , ^ - r 1 | a 1 | 2 = ( 0 , 0)(0, = f l ) -
d ) ( l ) = — i < 0 , and the theorems yield no information. 

EXAMPLE 2. For f i = { | < x 2 + j 2 < 4 } and Lu=uxx—uy, the characteris­
tic boundary points of Q are (0, ±£) and (0, ±2) . When P = ( 0 , 2), 
S(P, D ) = a At this point, bv-T1\x

1\2=(0, - l ) ( 0 , - l ) - ( i ) ( l ) = i > 0 . 
Suppose that u satisfies Lu^.0 on Q, and attains its maximum value 
M on Q, at (0, 2). If w is of class C2 in a neighborhood of P, then let 
Ni9 i = l , 2 , • • • , be neighborhoods of P such that n*° i i^ -=P. By 
Theorem 1 applied to the sets fll,=Qn^, there is a sequence of points 
{Q{} in fi which converges to P and such that w((^)=M, f = l , 2, • • • . 
Thus, by Nirenberg's maximum principle for parabolic inequalities, 
w = M on £1. Therefore, if u were not constant on fi, then it would not be 
of class C2 near P, and u would also satisfy the hypotheses of Theorem 4 
near P. The inward derivatives of u at P would be negative. 

I fP=(0 , J ) , thenS(P, Q ) = Q n { j ^ | } and Z)r-r1 |a1 |2=(0, - l ) ( 0 , 1 ) -
(—2)(1)=1>0. Consider a solution of Lw = 0 on S(P, fi) which attains its 
maximum value M relative to this set at P. If u is of class C2 near P, 
then Theorem 1 yields a sequence of points { g j in *?(P, ti) which con­
verges to P and for which w«^)=M. The points Qi9 z = l, 2, • • • , may all 
lie to one side of P. Thus, Nirenberg's theorem shows that w=Af either 
on $(P,Q)n({y<:-%}u{x>0}) or on 5(P,Q)n({y<:-i}u{x<0})l 
If w were not constant on either set, then it could not be of class C2 near 
P. Theorem 3 yields no result in this case because no direction points 
into Q and 5(P, Q) at P. However, if u satisfied Lw_0 on Q and if u<M 
held in Q near P, then Theorem 4 would imply that the inward derivatives 
of u at P were negative. 

The theorems can be applied at (0, — £), but not at (0, —2) where the 
curvature condition is not satisfied and S(P, £1) is empty. 
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