PARAMETRICES AND ESTIMATES FOR THE $\bar{\partial}_{b}$ COMPLEX ON STRONGLY PSEUDOCONVEX BOUNDARIES

BY G. B. FOLLAND AND E. M. STEIN

Communicated May 21, 1973
0 . Introduction. Here we briefly sketch the background of the problem to be considered, and refer to Folland-Kohn [4] for definitions and proofs.

Let X be the boundary of a strongly pseudoconvex region in a complex manifold of complex dimension $n+1$, or more generally a real manifold of dimension $2 n+1$ with a strongly pseudoconvex partially complex structure. We then have the tangential Cauchy-Riemann complex

$$
0 \longrightarrow \Lambda^{0,0} \xrightarrow{\delta_{b}} \Lambda^{0,1} \xrightarrow{\delta_{b}} \cdots \xrightarrow{\delta_{\delta_{b}}} \Lambda^{0, n} \longrightarrow 0
$$

where $\Lambda^{0, j}$ is the space of j-forms of purely antiholomorphic type. If we impose a Riemannian metric on X, we can form the formal adjoint ϑ_{b} of $\bar{\partial}_{b}$ and thence the Laplacian $\square_{b}=\bar{\partial}_{b} \vartheta_{b}+\vartheta_{b} \bar{\partial}_{b} . \square_{b}$ is nonelliptic; however, according to a theorem of Kohn, for $1 \leqq j \leqq n-1, \square_{b}$ satisfies the estimates

$$
\begin{equation*}
\|\phi\|_{s+1} \leqq c_{s}\left(\left\|\square_{b} \phi\right\|_{s}+\|\phi\|_{0}\right), \quad s=0,1,2, \cdots \tag{1}
\end{equation*}
$$

for all $\phi \in \Lambda^{0, j}$ with compact support. (Here $\left\|\|_{s}\right.$ is the L^{2} Sobolev norm of order s.) These estimates imply that \square_{b} is hypoelliptic; moreover, if X is compact, the nullspace \mathscr{N} of \square_{b} is finite-dimensional and there is an operator G on $\Lambda^{0, j}$ satisfying

$$
\|G \phi\|_{s+1} \leqq c_{s}\|\phi\|_{s} \quad\left(\phi \in \Lambda^{0, j}, s=0,1,2, \cdots\right)
$$

and

$$
G \square_{b}=\square_{b} G=I-P
$$

where P is the orthogonal projection onto \mathscr{N}.
Kohn's method unfortunately gives no clue as to how to compute G. Our purpose here is to construct G (modulo smoothing operators) as an

[^0]explicit integral operator and to derive sharp estimates for $\bar{\partial}_{b}$ from this representation. Our method will be to construct an exact fundamental solution for \square_{b} on a particular manifold-which incidentally yields some interesting examples of hypoelliptic behavior-and then to transfer this solution to a general X.

1. Analysis on the Heisenberg group. Let $N \subset C^{n+1}$ be the real hypersurface

$$
N=\left\{\zeta \in C^{n+1}: \sum_{1}^{n}\left|\zeta_{j}\right|^{2}=\operatorname{Im} \zeta_{0}\right\}
$$

N is the boundary of the generalized upper half-plane $\left\{\zeta: \sum_{1}^{n}\left|\zeta_{j}\right|^{2}<\operatorname{Im} \zeta_{0}\right\}$, which is holomorphically equivalent to the unit ball in C^{n+1}. We take $\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}, t\right)$ as coordinates on N where $x_{j}=\operatorname{Re} \zeta_{j}$, $y_{j}=\operatorname{Im} \zeta_{j}, t=\operatorname{Re} \zeta_{0}$; we also write $z_{j}=x_{j}+i y_{j}$ and $z=\left(z_{1}, \cdots, z_{n}\right)$.
N is strongly pseudoconvex; moreover, N has a natural identification with a nilpotent Lie group (the Heisenberg group; cf. [7]). The group law is given by

$$
(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im} \sum_{1}^{n} z_{j} z_{j}^{\prime}\right)
$$

It is easy to verify that

$$
X_{j}=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t}, \quad T=\frac{\partial}{\partial t}
$$

form a basis for the Lie algebra of N. Also, the forms $d \bar{z}_{1}, \cdots, d \bar{z}_{n}$ are a left-invariant basis for the antiholomorphic one-forms on N.
$\bar{\partial}_{b}$ is a left-invariant operator on N, and it is not hard to compute it explicitly. If we set $Z_{j}=\frac{1}{2}\left(X_{j}-i Y_{j}\right)=\left(\partial / \partial z_{j}\right)+i \bar{z}_{j}(\partial / \partial t)$, then

$$
\bar{\partial}_{b}\left(\sum_{J} \phi_{J} d \bar{z}^{J}\right)=\sum_{J} \sum_{k=1}^{n}\left(Z_{k} \phi_{J}\right) d \bar{z}_{k} \wedge d \bar{z}^{J}
$$

Here J is a multi-index and $d \bar{z}^{J}$ denotes a wedge product of $d \bar{z}$'s.
We impose the left-invariant metric on N which makes Z_{1}, \cdots, Z_{n}, Z_{1}, \cdots, Z_{n}, T orthonormal. Straightforward computation shows that the action of \square_{b} on $\Lambda^{0, j}$ is given by

$$
\square_{b}\left(\sum_{J} \phi_{J} d \bar{z}^{J}\right)=-\sum_{J}\left(\mathscr{L}_{n-2 j} \phi_{J}\right) d \bar{z}^{J}
$$

where, for $\alpha \in C$,

$$
\mathscr{L}_{\alpha}=\frac{1}{2} \sum_{1}^{n}\left(Z_{k} Z_{k}+Z_{k} Z_{k}\right)-i \alpha T
$$

The study of \square_{b} is therefore reduced to the study of the left-invariant scalar operators $\mathscr{L}_{\alpha}, \alpha=n, n-2, \cdots,-n$.

We introduce the norm function $\rho(z, t)=\left(|z|^{4}+t^{2}\right)^{1 / 4}$ on N, which arises naturally in the study of singular integrals on N [6]. In [3] Folland showed that there is a constant $c_{0} \neq 0$ such that $c_{0}^{-1} \rho^{-2 n}$ is a fundamental solution for \mathscr{L}_{0}. From homogeneity and symmetry considerations it is then natural to search for a fundamental solution for \mathscr{L}_{α} of the form $\phi_{x}(z, t)=\rho^{-2 n}(z, t) f\left(t / \rho^{2}\right)$. The equation $\mathscr{L}_{\alpha} \phi_{\alpha}=\delta$ (where δ is the point mass at 0) leads to an ordinary differential equation for f which can be solved explicitly, and the candidate for a fundamental solution turns out to be

$$
\phi_{\alpha}(z, t)=\left(t+i|z|^{2}\right)^{-(n+\alpha) / 2}\left(t-i|z|^{2}\right)^{-(n-\alpha) / 2} .
$$

Theorem 1.

$$
\mathscr{L}_{\alpha} \phi_{\alpha}=c_{\alpha} \delta \quad \text { where } c_{\alpha}=\frac{-i^{-\alpha} 2^{2-2 n} \pi^{n+1}}{\Gamma\left(\frac{1}{2}(n+\alpha)\right) \Gamma\left(\frac{1}{2}(n-\alpha)\right)} .
$$

Corollary. $\quad \mathscr{L}_{\alpha}$ is hypoelliptic if and only if $\pm \alpha \neq n, n+2, n+4, \cdots$.
For, if $\pm \alpha \neq n, n+2, n+4, \cdots$, then $c_{\alpha} \neq 0$ and $c_{\alpha}^{-1} \phi_{\alpha}$ is a fundamental solution for \mathscr{L}_{α} which is C^{∞} away from 0 , whence \mathscr{L}_{α} is hypoelliptic. Otherwise, $c_{\alpha}=0$, so that ϕ_{α} is a nonsmooth solution of $\mathscr{L}_{\alpha} \phi_{\alpha}=0$.

The family of operators \mathscr{L}_{α} bears some resemblance to an example of Grušin [5] which also involves hypoellipticity of an operator for "almost all" values of a parameter.

The occurrence of the "bad values" of α can be explained in terms of the representation theory of N. According to the Stone-von Neumann theorem, for each real $\lambda \neq 0$ there is a unique irreducible representation π_{λ} of N on $L^{2}\left(\boldsymbol{R}^{n}\right)$ such that $\pi_{\lambda}\left(X_{j}\right)=-\partial / \partial \xi_{j}, \pi_{\lambda}\left(Y_{j}\right)=4 i \lambda \xi_{j}, \pi_{\lambda}(T)=i \lambda$ where ξ_{1}, \cdots, ξ_{n} are coordinates on \boldsymbol{R}^{n}, and $L^{2}(N)$ is a direct integral of these representations. (See [2].) Setting $\eta=2|\lambda|^{1 / 2} \xi$, we have

$$
\pi_{\lambda}\left(\mathscr{L}_{\alpha}\right)=|\lambda| \sum_{1}^{n}\left[\left(\partial^{2} / \partial \eta_{j}^{2}\right)-\eta_{j}^{2}\right]+\lambda \alpha
$$

Thus $\pi_{\lambda}\left(\mathscr{L}_{\alpha}\right)$ is invertible for (almost) all λ if and only if $\pm \alpha$ is not an eigenvalue of the n-dimensional Hermite operator $\sum_{1}^{n}\left[\eta_{j}^{2}-\left(\partial^{2} / \partial \eta_{j}^{2}\right)\right]$. But these eigenvalues are well known to be $n, n+2, n+4, \cdots$.

If α is not an exceptional value, the equation $\mathscr{L}_{\alpha} u=f$ is solved for reasonable f by $u=f *\left(c_{\alpha}^{-1} \phi_{\alpha}\right)$, where $*$ denotes convolution on the group N. We can use this fact to derive sharp versions of the estimates (1) for \mathscr{L}_{α}. If $U \subset N$ is open, $1 \leqq p \leqq \infty, k \in \boldsymbol{R}$, let $L_{k}^{p}(U)$ be the L^{p} Sobolev space of order k on U. For $k=0,1,2, \cdots$, we define $S_{k}^{p}(U)$ to be the space of all
$f \in L_{k / 2}^{p}(U)$ such that $D^{\gamma} f \in L^{p}(U)$ for all $|\gamma| \leqq k$ where

$$
D=\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right)
$$

S_{k}^{p} has an obvious norm.
Theorem 2. Given $U \subset N, V \subset \subset U, \pm \alpha \neq n, n+2, n+4, \cdots$ and $f a$ function on U, let u be any solution of $\mathscr{L}_{\alpha} u=f$ on U. If $f \in S_{k}^{p}(U)$ and $1<p<\infty$ then $u \in S_{k+2}^{p}(V)$; also, if $f \in L^{p}(U), q^{-1}=p^{-1}-(n+1)^{-1}$, and $1<p<q<\infty$, then $u \in L^{q}(V)$.

The essential point of the proof is the fact that the distribution derivatives $D^{\gamma} \phi_{\alpha}(|\gamma|=2)$ and $T \phi_{\alpha}$ are singular integral kernels à la Knapp-Stein [6] (plus, perhaps, multiples of δ), and the corresponding convolutions are known to be bounded on $L^{p}, 1<p<\infty$ (cf. [1], [7]). The $L^{p}-L^{q}$ estimates were announced in Stein [8].
2. General strongly pseudoconvex manifolds. Let X be a strongly pseudoconvex $(2 n+1)$-manifold as in $\S 0$. We choose a nonvanishing real vector field T which is complementary to the complex directions on X, so that $C T X=T_{1,0} X \oplus T_{0,1} X \oplus C \cdot T$. Replacing T by $-T$ if necessary, the Levi form \langle,$\rangle on T_{1,0} X$ given for $Z_{1}, Z_{2} \in C^{\infty}\left(T_{1,0} X\right)$ by

$$
\left[Z_{1}, Z_{2}\right]=-2 i\left\langle Z_{1}, Z_{2}\right\rangle T \text { modulo } C^{\infty}\left(T_{1,0} X \oplus T_{0,1} X\right)
$$

is positive definite. We extend \langle,$\rangle to a Hermitian metric on X$ by requiring $T_{1,0} X \perp T_{0,1} X \perp T$ and $\langle T, T\rangle=1$, and consider the Laplacian \square_{b} associated to this metric. We work locally and fix once and for all an orthonormal frame Z_{1}, \cdots, Z_{n} for $T_{1,0} X$. Further we denote the dual frame for $T_{1,0}^{*} X$ by $\omega_{1}, \cdots, \omega_{n}$.

In this setup X looks locally like the Heisenberg group modulo small error terms, in the sense provided by the following two lemmas.

Lemma 1. If $\phi=\sum_{J} \phi_{J} \bar{\omega}^{J} \in \Lambda^{0, j}$, then

$$
\square_{b} \phi=\sum_{J}\left[-\frac{1}{2} \sum\left(Z_{k} \bar{Z}_{k}+\bar{Z}_{k} Z_{k}\right)+(n-2 j) i T\right]\left(\phi_{J}\right) \bar{\omega}^{J}
$$

modulo terms of order one and zero not involving differentiation in the T direction.

Lemma 2. For each $\xi \in X$ there exist local coordinates $x_{1}^{\xi}, \cdots, x_{n}^{\xi}$, $y_{1}^{\xi}, \cdots, y_{n}^{\xi}, t^{\xi}$ on a neighborhood U_{ξ} of ξ, which are centered at ξ and depend smoothly on ξ, such that with $z_{k}^{\xi}=x_{k}^{\xi}+i y_{k}^{\xi}$, on U_{ξ} the vector fields Z_{k} and T take the form

$$
\begin{aligned}
Z_{k} & =\frac{\partial}{\partial z_{k}^{\xi}}+i \bar{z}_{k}^{\xi} \frac{\partial}{\partial t^{\xi}}+\sum\left(a_{k m} \frac{\partial}{\partial z_{m}^{\xi}}+b_{k m} \frac{\partial}{\partial \bar{z}_{m}^{\xi}}\right)+c_{k} \frac{\partial}{\partial t^{\xi}} \\
T & =\frac{\partial}{\partial t^{\xi}}+\sum\left(\alpha_{m} \frac{\partial}{\partial z_{m}^{\xi}}+\beta_{m} \frac{\partial}{\partial \bar{z}_{m}^{\xi}}\right)+\gamma \frac{\partial}{\partial t^{\xi}}
\end{aligned}
$$

where $a_{k m}, b_{k m}, \alpha_{m}, \beta_{m}$, and γ vanish to first order at ξ, and c_{k} vanishes to first order in t^{ξ} and to second order in z_{m}^{ξ} and $z_{m}^{\xi}, m=1, \cdots, n$.

These coordinates are constructed using exponentials of linear combinations of Z_{k}, Z_{k}, and T. In case X is realized as a hypersurface in a complex manifold M, we can also construct them by restricting certain distinguished holomorphic coordinates on M to X.

We can now construct a parametrix for \square_{b} on $\Lambda^{0, j}, 1 \leqq j \leqq n-1$. By applying a partition of unity it suffices to consider forms supported in a fixed compact set V. Let $\Omega=\left\{(\eta, \xi) \in X \times X: \eta \in U_{\xi}\right\}$, and choose $\psi \in$ $C_{0}^{\infty}(\Omega)$ which $=1$ on a neighborhood of the diagonal in $V \times V$. Define the double form $K_{j} \in \Lambda^{0, j} \boxtimes \Lambda^{2 n+1-j}$ by

$$
\begin{aligned}
K_{j}(\eta, \xi)= & -c_{n-2 j}^{-1} \psi(\eta, \xi)\left(t^{\xi}(\eta)+i\left|z^{\xi}(\eta)\right|^{2}\right)^{j-n} \\
& \times\left(t^{\xi}(\eta)-i\left|z^{\xi}(\eta)\right|^{2}\right)^{-j} \sum_{J} \bar{\omega}^{J}(\eta) \otimes\left(* \bar{\omega}^{J}\right)(\xi)
\end{aligned}
$$

Define the operator K on $\left\{\phi \in \Lambda^{0, j}: \operatorname{supp} \phi \subset V\right\}$ by

$$
K \phi(\eta)=\int_{\xi} K_{j}(\eta, \xi) \wedge \phi(\xi)
$$

and set $S=I-\square_{b} K$. With the Sobolev spaces $S_{k}^{p}=S_{k}^{p}(V)$ defined as in $\S 1$, we then have

Theorem 3. K is bounded from S_{k}^{p} to $S_{k+2}^{p}(1<p<\infty)$ and from L^{p} to $L^{q}\left(q^{-1}=p^{-1}-(n+1)^{-1}, 1<p<q<\infty\right) . S$ is bounded from S_{k}^{p} to S_{k+1}^{p} $(1<p<\infty)$ and from L^{p} to $L^{q}\left(q^{-1}=p^{-1}-\frac{1}{2}(n+1)^{-1}, 1<p<q<\infty\right)$.

Corollary. $I-\square_{b} K\left(\sum_{0}^{m-1} S^{k}\right)=S^{m}$ is bounded from S_{k}^{p} to S_{k+m}^{p}.
Thus we have a right inverse to \square_{b} modulo smoothing operators of arbitrarily high order. The corresponding left inverse is obtained by using the adjoint operator K^{*}; the analogues of Theorem 3 and its corollary hold here also. (The main point is to observe that the coordinates of Lemma 2 are essentially symmetric in ξ and η.)

It is also possible to obtain estimates for K and S in terms of the nonisotropic Lipschitz norms introduced in Stein [8].

Details and proofs will appear in a later publication.

References

1. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin and New York, 1971.
2. J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. II, Bull. Soc. Math. France 85 (1957), 325-388. MR 20 \#1928.
3. G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376.
4. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies no. 75, Princeton Univ. Press, Princeton, N.J., 1972.
5. V. V. Grušin, On a class of hypoelliptic operators, Mat. Sb. 83 (125) (1970), 456-473 = Math. USSR Sb. 12 (1970), 458-476. MR 43 \#5158.
6. A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. 93 (1971), 489-578.
7. A. Korányi and S. Vági, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648.
8. E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445.

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

Department of Mathematics, Princeton University, Princeton, New Jersey 08540

Current address (G. B. Folland): Department of Mathematics, University of Washington, Seattle, Washington 98195

[^0]: AMS (MOS) subject classifications (1970). Primary 35B45, 35C15, 35H05, 35N15, 47G05; Secondary 32F15, 43A80, 44A25.

 Key words and phrases. Tangential Cauchy-Riemann operators, subelliptic operators, regularity of solutions, fundamental solutions, integral operators, analysis on the Heisenberg group, L^{p} estimates, Lipschitz estimates.

