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0. Introduction. Here we briefly sketch the background of the problem 
to be considered, and refer to Folland-Kohn [4] for definitions and proofs. 

Let X be the boundary of a strongly pseudoconvex region in a complex 
manifold of complex dimension n + l, or more generally a real manifold 
of dimension 2n+l with a strongly pseudoconvex partially complex 
structure. We then have the tangential Cauchy-Riemann complex 

0 —> A0-0 -A> A0-1 - ^ > • • • - ^ > A°>n —> 0 

where A0'*' is the space of /-forms of purely antiholomorphic type. If we 
impose a Riemannian metric on X, we can form the formal adjoint 
êh of Sb and thence the Laplacian •&=3Ö#&+#03Ö . [jb is nonelliptic; 
however, according to a theorem of Kohn, for l^j^n— 1, •& satisfies 
the estimates 

(i) H\\s+i ^ c9(\\nb4>\\. + MU), s = o, l , 2 , • • •, 
for all $ e A0,j with compact support. (Here || ||s is the L2 Sobolev norm 
of order s.) These estimates imply that •& is hypoelliptic; moreover, if X 
is compact, the nullspace ^V of •& is finite-dimensional and there is an 
operator G on A°'>' satisfying 

\\GHs+1^c8U\\8 # e A ° ' ' , j = 0 , l , 2 , " - ) 
and 

where P is the orthogonal projection onto JV. 
Kohn's method unfortunately gives no clue as to how to compute G. 

Our purpose here is to construct G (modulo smoothing operators) as an 
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explicit integral operator and to derive sharp estimates for Sb from this 
representation. Our method will be to construct an exact fundamental 
solution for [Jb on a particular manifold—which incidentally yields some 
interesting examples of hypoelliptic behavior—and then to transfer this 
solution to a general X. 

1. Analysis on the Heisenberg group. Let A<=Cn+1 be the real hyper-
surface 

7 V = { U C » + I : | | ^ = lm£0} 

Nis the boundary of the generalized upper half-plane {£: 2i |£$|2<Im £0}> 
which is holomorphically equivalent to the unit ball in Cn+1. We take 
(xX9 • • • , xn9 yl9 - • • 9yn91) as coordinates on N where * ~ R e £,-, 
y ~ I m £,-, f=Re £0; we also write z—Xj+iyx and z=(zl9 • • , zw). 

N is strongly pseudoconvex; moreover, N has a natural identification 
with a nilpotent Lie group (the Heisenberg group; cf. [7]). The group law 
is given by 

(z, t)(z', t') = ( z + z', * + *' + 2 Im 2 *i*îV 

It is easy to verify that 

d d 
'i = + 2 ^ T ' 

3x3- 3f 
a a 

Xx — _ — 2LXx _ . 
3 ay , ' a * ' 

a T- — 
dt 

form a basis for the Lie algebra of N. Also, the forms dzl9 • • • , rffn are a 
left-invariant basis for the antiholomorphic one-forms on N. 

Sb is a left-invariant operator on A", and it is not hard to compute it 
explicitly. If we set Z^iX^iY^idldz^+iz^d/dt), then 

^(2 i>j dzA = 2 2 (2*^)d**A rff J-

Here / is a multi-index and rfz*7 denotes a wedge product of dfs. 
We impose the left-invariant metric on N which makes Zl9 • • • , Zn9 

Zl9 • • • , Zn, r orthonormal. Straightforward computation shows that 
the action of G & on A0'* is given by 

where, for a e C, 

* 1 



1974] PARAMETRICES AND ESTIMATES FOR THE 8b COMPLEX 255 

The study of n& is therefore reduced to the study of the left-invariant 
scalar operators <5?a, a = n , n—2, • • • , — n. 

We introduce the norm function p(z9 f)=(|z|4+J2)1/4 on TV, which 
arises naturally in the study of singular integrals on TV [6]. In [3] 
Folland showed that there is a constant c0?£0 such that c^lp~2n is a 
fundamental solution for i? 0 . From homogeneity and symmetry considera
tions it is then natural to search for a fundamental solution for JSfa of the 
form <f>x(z,t) = p-zn(z,t)f(tlp2). The equation •£?«<£«=d (where ô is the 
point mass at 0) leads to an ordinary differential equation for ƒ which can 
be solved explicitly, and the candidate for a fundamental solution turns 
out to be 

<j>a(z, t)= (t + i |z|2)-<n+a>/2(/-/ |z|2)-<n-a>/2. 

THEOREM 1. 

— j-«22~2 V + 1 

3?CAOL = CJ> where c„ = . 

IXK» + «»r(i(» - «)) 
COROLLARY. J? a is hypoelliptic if and only if ±oL^n, n+2, « + 4 , 

For, if ztocT^w, n+2, rc+4, • • • , then c ^ O and c " 1 ^ is a fundamental 
solution for J£?a which is C00 away from 0, whence JSfa is hypoelliptic. 
Otherwise, c a=0, so that </>a is a nonsmooth solution of o5?a</>a=0. 

The family of operators J§?a bears some resemblance to an example of 
Grusin [5] which also involves hypoellipticity of an operator for "almost 
all" values of a parameter. 

The occurrence of the "bad values" of a can be explained in terms of 
the representation theory of N. According to the Stone-von Neumann 
theorem, for each real XT*0 there is a unique irreducible representation irx 

of N on L\Rn) such that ^ ( J Q ^ - d / a f , , ^ ( 7 , ) = 4 / ^ , TTX(T)=Ü 
where fi, • • • , fn are coordinates on Rn, and L2(N) is a direct integral of 
these representations. (See [2].) Setting ^=2|A|1 / 2 | , we have 

•nlSeï = |A| 2 [ ( 9 2 « - ,»] + Aa. 
1 

Thus irx(£fa) is invertible for (almost) all A if and only if ± a is not an 
eigenvalue of the «-dimensional Hermite operator 2 i Ivl^i^l^vl)]-
But these eigenvalues are well known t o b e « , « + 2 , « + 4 , - - - . 

If a is not an exceptional value, the equation <^au=f is solved for 
reasonable ƒ by u=f * (c~Va), where * denotes convolution on the group 
N. We can use this fact to derive sharp versions of the estimates (l)for JS?a. 
If Uc N is open, 1 ^ p < : oo, fc e R, let Lf (J7) be the L*> Sobolev space of 
order k on £/. For &=0, 1, 2, • • • , we define Sl(U) to be the space of all 
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ƒ G L£/2(U) such that Dyfe LP(U) for all \y\<k where 

££ has an obvious norm. 

THEOREM 2. G/yew t/c=A^5 F e e t / , ± a ^ / z , ?z+2, « + 4 , • • • and f a 
function on U9 let u be any solution of £?au~f on U. IffeSKU) and 
\<p<oo then u e S£+2(V); also, if feLP(U), q-^p^-in+l)-1, and 
1 <p<q< oo, then u E LQ(V). 

The essential point of the proof is the fact that the distribution deriva
tives Dy(j>^ ( |y|=2) and T</>a are singular integral kernels à la Knapp-Stein 
[6] (plus, perhaps, multiples of ó), and the corresponding convolutions 
are known to be bounded on Lp, l<p<oo (cf. [1], [7]). The W-U 
estimates were announced in Stein [8]. 

2. General strongly pseudoconvex manifolds. Let I be a strongly 
pseudoconvex (2w+l)-manifold as in §0. We choose a nonvanishing real 
vector field T which is complementary to the complex directions on X, 
so that CTX=T10X®T01X®C • T. Replacing T by - 7" if necessary, the 
Levi form < , ) on T10X given for Zl9 Z2 e C°°(r l i0Z) by 

[Zl9Zt] = - 2 / ( Z l 5 Z 2 ) r m o d u l o C°°(r1>0Z® T0tlX) 
is positive definite. We extend < , > to a Hermitian metric on X by 
requiring 7\ >0XJ_T0 tlX ±Tand(T, T) = l, and consider the Laplacian D& 
associated to this metric. We work locally and fix once and for all an 
orthonormal frame Zl9 • • • ,Zn for T10X. Further we denote the dual 
frame for T*0X by col5 • • • , a>n. 

In this setup X looks locally like the Heisenberg group modulo small 
error terms, in the sense provided by the following two lemmas. 

LEMMA 1. If^—^j <}>jwJ e A0*'', then 

• ^ = 2 [-* 2 ( Z Â + ZA) + (n - 2j)iTUj)œJ 

j 

modulo terms of order one and zero not involving differentiation in the T 
direction. 

LEMMA 2. For each | e X there exist local coordinates x[, • • • , xi, 
yl, ' ' ' •> j L t* on a neighborhood U^ of f, which are centered at £ and 
depend smoothly on f, such that with zl=xl+iyl, on Uç the vector fields 
Zk and T take the form 

Zfc ~ dz\+ lZk dt*+ Z Vkm dzi+ bkm dzl) + Ck dt* ' 
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where akm, bkm, aw, fim9 and y vanish to first order at | , and ck vanishes to 
first order in t* and to second order in z^m and z^, m=l, • • • , n. 

These coordinates are constructed using exponentials of linear combina
tions of Zfc, Zh, and T. In case Z i s realized as a hypersurface in a complex 
manifold M, we can also construct them by restricting certain distinguished 
holomorphic coordinates on M to X. 

We can now construct a parametrix for •& on A0>3\ l ^ y ^ w — 1 . By 
applying a partition of unity it suffices to consider forms supported in a 
fixed compact set V. Let Ù={(^ , £) e XxX:rj e U%}9 and choose ip e 
C^°(fi) which=l on a neighborhood of the diagonal in Vx V. Define the 
double form Kj e A°"'^ A2n+1"' by 

Kfa i) = -tàMv, 00*00 + * \Av)\y-n 

X (t*(ri) - i |z*fo)|2)-' 2 <^0?) ® (**/)(£). 

Define the operator ^ on {</> e A0 ' ':supp </> c: V) by 

K^)=JK,(^OA#E), 

and set S=I-\JbK. With the Sobolev spaces S£=S£(V) defined as in §1, 
we then have 

THEOREM 3. K is bounded from Sk to Sk+2 ( 1 < / ? < C O ) and from Lp to 
Lq (q-1=p-1 — (n+l)~\ l< / ?<#<oo) . S is bounded from Sk to Sk+1 

( l</?<oo) and from Lp to L« ( ? - 1 =p- 1 ~K«+ 1 )~ 1
J Kp<q<°o). 

COROLLARY. ƒ - Dô^(2™ - 1 Sk)=Sm is bounded from S% to S ^ . 

Thus we have a right inverse to • & modulo smoothing operators of 
arbitrarily high order. The corresponding left inverse is obtained by 
using the adjoint operator K*; the analogues of Theorem 3 and its 
corollary hold here also. (The main point is to observe that the coordinates 
of Lemma 2 are essentially symmetric in f and r\.) 

It is also possible to obtain estimates for K and S in terms of the non-
isotropic Lipschitz norms introduced in Stein [8]. 

Details and proofs will appear in a later publication. 
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