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Thirty years ago, Courant gave a remarkable lecture to this Society. 
My talk today is more or less a progress report on an idea which he 
described near the end of that lecture. There are a lot of people in this city, 
and a few in this room, who worked very closely with Courant—but the 
idea I am talking about came to fruition in a different and more unexpected 
way. 

To begin with, his idea was forgotten. Perhaps you have forgotten it 
too ; it had to do with approximation by piecewise polynomials, and I will 
try to explain it properly in a moment. Ten years later Pólya made a very 
similar suggestion [3], [4], without reference to Courant's lecture. At 
the same time, and independently, Synge did exactly the same thing [10]. 
Meanwhile Schoenberg had written the paper [5] which gave birth to the 
theory of splines—again proposing that, for approximation and inter­
polation, the most convenient functions were piecewise polynomials. 

Certainly there was an idea whose time was coming. When it finally 
came, fifteen years after Courant's lecture, it developed into what is now 
the most powerful technique for solving a large class of partial differential 
equations—the finite element, method. The only sad part is that virtually 
the whole development took place as if Courant had never existed. It is 
like the story of Romulus and Remus (I think); in this case, the wolves 
who eventually took care of the orphan happened to be structural 
engineers.2 They needed a much better technique for the solution of 
complicated elliptic systems, and in numerical analysis the algorithms 
which survive and mature are those which are needed. We want to 
describe this finite element method, and then at the end to propose an 
open problem; its interest may be more algebraic-combinatorial than 
practical, but it is directly suggested by the construction of finite elements. 

Prior to Courant, the usual approximating functions were sines and 
cosines, or Bessel functions, or Legendre polynomials. For a simple 
problem on a regular domain, these are still completely adequate; their 
approximation properties are well known, and integrations are simplified 
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by orthogonality. On an irregular domain (an airplane, for example, or a 
human skull—both of whose eigenfrequencies have now been computed), 
the situation is completely different; these functions are virtually useless. 
What is needed is a class of approximants which can be defined, and made 
to satisfy boundary conditions, on domains of any reasonable shape. 

Courant's idea was very simple. He triangulated the domain and 
introduced the space of continuous piecewise linear functions: v = 
a + bx + cy within each triangle. The function v is uniquely determined 
by its values at the vertices of the triangulation; equivalently, the space 
has a convenient basis. If the vertices are zl9 . . . , zN, and a linear cpj is 
determined in each triangle by <p/zf) = ôtj, then any element of Courant's 
space can be expanded as a combination of the (py. 

N 

v(x9 y) = X v(Zj)(pj(x, y). 
i 

Notice that cpj is automatically continuous across the edges between 
triangles. It is linear along such an edge, and is therefore determined by its 
values at the two vertices at the ends; these are held in common by the two 
triangles, and continuity is assured. 

This basis is called local, because each cpj is nonzero only in those 
triangles of which Zj is a vertex ; the graph of cpj is just a pyramid, with its 
apex over the vertex z-y The basis is not orthogonal, but nevertheless 
almost all of the inner products \\ (pj(pk are zero; unless Zj and zk belong to 
the same triangle, the integrand vanishes identically. Therefore the 
matrices which arise in the finite element method are sparse and are 
welcomed by the computer. 

This space was later rediscovered by the engineers, but at first in an 
indirect way; their intuition took them directly to the applications which 
we describe below, and it was only gradually that their equations were 
recognized as instances of the Rayleigh-Ritz principle applied to Courant's 
trial functions. These piecewise linear functions are still useful in 
complicated nonlinear problems; probably they remain the most 
frequently used finite elements. For solving the standard equations of 
linear elasticity, however, they have definitely been superseded. In fact, 
we trace the real beginning of the finite element method to the time when 
Couranfs space was actually used on a large scale, and its defects became 
clear. It was these defects which forced a further development of the 
underlying idea. We mention three of the worst: 

(i) linear polynomials permit only a crude approximation of the true 
solution; 

(ii) the derivatives of Courant's elements are discontinuous at the 
boundaries between triangles; 
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(iii) a curved domain will be inaccurately represented by a union of 
triangles (or squares, on which the trial functions become bilinear: 
a + bx + cy + dxy). 

The problem is therefore to construct spaces which are as simple as 
Courant 's, or nearly so, and at the same time free of these drawbacks. 
Dozens of such "finite element spaces" have been proposed; we take up 
the three defects in order. 

(i) The basic order of approximation is improved by increasing the 
degree of the polynomials, for example to continuous piecewise quadratics 
(a + bx + cy + dx2 + exy + fy2 in each triangle). To be useful in 
computation, however, this space must have a local basis (not every space 
does). Its construction is the first important step beyond Courant's: 
add to the vertices a further set of nodes placed at the midpoints of the 
edges. Now, there are six nodes for every triangle, and the rule <p/zf) = ôu 

determines a unique quadratic. It is automatically continuous between 
triangles, because the three nodes on an edge (two vertices and one mid­
point) determine the quadratic along that edge. Again, each element in the 
space can be written as v = £ v(Zj)(pj. 

The continuous piecewise cubics also admit a local basis. There are ten 
parameters in a cubic and therefore ten nodes for each triangle, arranged 
like bowling pins: one at each vertex, two more along each edge, and one 
at the centroid. A similar construction applies to C° polynomials of 
degree p in any number of variables. 

It is essential to know the dimension of these spaces. This means 
counting the nodes, and we need the observation that vertices, triangles, 
and edges occur in the ratio 1:2:3. 

PROOF. Each interior vertex accounts for 360 degrees, and each 
triangle for 180; thus, there are about twice as many triangles as vertices. 
If we count each edge as half in one triangle and half in its neighbor, that 
gives two triangles for three edges. (Or introduce one new vertex within a 
triangle; there are three new edges and a net gain of two triangles. The 
1:2:3 rule needs a slight correction from the Euler-Poincaré formula, 
because of the outer boundary of the domain. In fact, according to the 
Euler polyhedron formula (Tutte [11]), a interior and /? boundary vertices 
produce 2a + fi — 2 triangles and 3a + 2/? — 3 edges.) If 7 is the 
number of vertices, then Courant's space has dimension 7, the quadratic 
space has dimension 7 + E ~ 47, and the cubic space 7 + IE + T ~ 
97. With degree p in n variables the coefficient increases to pn; this factor 
governs the number of parameters in the approximation and in practice 
it is rarely allowed to reach as high as 10. 

(ii) It is surprisingly hard to piece together polynomials in such a way 
that not only v but also its normal derivative vn is continuous between 
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triangles. Such a construction is officially required for biharmonic 
problems A2u = ƒ ; otherwise the second derivatives of v involve delta 
functions and the associated energy Jj |Af|2 dx dy becomes infinite. These 
nonconforming elements, with infinite energy, are nevertheless frequently 
used in engineering computations. All the rules of the Rayleigh-Ritz 
method are broken, but the answers are sometimes very good (and some­
times not). We return below to these "variational crimes." In three 
variables it appears that C1 continuity between tetrahedra is first achieved 
by finite element polynomials of degree 9. Such a construction is out of 
the question in practice, and the use of an illegal element is inevitable. 

In two variables C1 continuity is possible for quintic polynomials. 
There are 21 coefficients in a quintic and 18 conditions will be specified 
by the values of v9 vx, vy, vxx9 vxyn and vyy at the vertices; the vertices become 
six-fold nodes. The other three conditions come from matching the normal 
derivatives vn at the midpoints of the edges. Along an edge between 
triangles, we find the same quintic from both sides, since three conditions 
are shared at each end of the edge—v and its tangential derivatives vt and 
vtt, which are computable from the six parameters at the vertex. Also the 
normal derivative v„ is continuous across the edge; it is a quartic and is 
uniquely determined by its value at the midpoint, together with vn and 
vnt at each end. All these values are common to the two quintics which 
meet at the edge. 

These quintics are of class C1, with C2 continuity at the vertices; this 
characterizes the space. To find a basis, we have to generalize the rule 
(pj(zi) = öij9 which applied when only function values were specified at 
the nodes; the space now involves the derivative d/dn at the edge mid­
points, and six derivatives Dj = /, d/dx, . . . , d2/dy2 at the vertices. Each 
of these nodal parameters, specified by a node z} and a derivative Dj9 

corresponds to a basis function cp}. In other words, for each pair (zj9 Dj) 
we have D^/z^) = 1 ; and the other nodal parameters of cp} are Dt(pj{z^ = 
0. This means six basis functions for each vertex and one for each mid­
point; since there are three times as many edges as vertices, the dimension 
is9K 

On a square mesh there is a much simpler C1 element—cubic in each 
variable separately, with 16 coefficients in the polynomial and v, vx9 vy9 

and vxy as nodal parameters at the four vertices. 
(iii) The third difficulty with Courant's space is the change from a 

smooth domain Q to a triangulated polygon. We have studied elsewhere 
[8] the effect on the solution; it is always serious near the boundary 5Q, 
and it will be dominant also in the interior if we improve the underlying 
polynomials to quadratics or cubics. The same problem is present for 
finite difference approximations; it is hard to find any reasonable 
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difference formula near a curved boundary, and nearly impossible to 
maintain high accuracy. For finite differences, this difficulty is still 
unresolved ; its solution for finite elements has given them a tremendous 
advantage. 

In the theory of partial differential equations, boundaries are 
straightened by a local change of coordinates. Here we do the same, 
mapping curved triangles in the x-y plane into straight triangles in t;-rj. 
The problem is to keep the coordinate changes computable, and Irons 
found the perfect solution: Use the same class of piecewise polynomials for 
the coordinate transformations x(£, rj), y(Ç, rj) as for the approximations to 
w( ,̂ rj). Such transformations are called isoparametric and the inter-
element continuity of finite element polynomials assures that neighboring 
elements in Ç-n remain neighbors in x-y. The change of coordinates is 
determined purely by the movement of the nodes. With piecewise 
quadratic or cubic approximations to the boundary, the change of 
domain error becomes negligible, and an entirely new class of applications 
is made possible. 

Approximate solution of partial differential equations. We want to 
explain briefly how these approximating spaces are used. The finite 
element method is based on variational principles rather than differential 
equations', in many applications an extremal principle is the primary 
physical law, and the Euler equation is only a secondary consequence. 
Therefore the shift toward direct approximation of the variational 
problem and away from difference approximation of the Euler equation 
is not surprising. The distinction is especially important for natural 
boundary conditions, which need not be satisfied by the trial functions in 
the extremal problem. The real theme of Courant's lecture (the finite 
element method was only an afterthought) was to perturb variational 
principles by a "penalty" term in order that all boundary conditions 
should become natural; this is justified by the theory, but does not seem 
to have become popular in engineering calculations. The essential 
(Dirichlet) conditions are of lower order and much less difficult to satisfy. 

Suppose the problem is to minimize a quadratic functional J(v) = 
a{v, v) — 2b(f v) over a space V of admissible functions—normally V 
contains those functions with finite strain energy, a(v, v) < oo, which 
satisfy the essential boundary conditions. 

EXAMPLE. a(v, v) = ^ v2
x + v%9 b(f v) = j} fv, V = J f J (essential con­

dition: u = 0 on dQ). The Euler equation for the minimizing u is linear 
and selfadjoint : —Au = ƒ in Q, u = 0 on dQ. Its weak form is 

uxvx + uyvy = \\fv, 
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or a{u, v) = b{f v) for v in V. This is the engineer's equation of virtual 
work. 

The Rayleigh-Ritz idea almost suggests itself—to choose a finite-
dimensional subspace S a V, and minimize the functional J(v) over S. The 
idea has a long history, but with hand computation the space S had to be 
very small and the approximation correspondingly poor. I suppose it 
was the computer which demanded a new construction ; the dimension of 
iS could be large, if its basis were kept sufficiently simple. This means 
piecewise polynomials and the finite element method. Let the trial 
functions, as constructed earlier, be v = ]T q^j. Then the functional to be 
minimized becomes a quadratic in the unknowns q = (qu . . . , qN): 

J(v) = a(Y qjCPp S qjÇj) - 2b (f, £ qjcpj) = qTKq - 2qTF. 

The entries of the matrix K are the energy inner products a{cpp (pk), and 
the vector F has components b( ƒ, cpk). The optimal coefficients Qj9 those 
which minimize this quadratic, are determined by the linear system 
KQ = F. These Qy are the nodal values of the Ritz-finite element approxi­
mation us = £ Qj(pj, which minimizes J(v) over S. This is therefore what 
the computer has to do: given the locations of the nodes, it connects the 
nodal values of v (or more generally the nodal parameters D-v) to the 
coefficients of the polynomial in the triangle, integrates to find K and F, 
and then solves KQ = F. 

Convergence of the finite element method. Numerical analysis is 
partly pure mathematics and partly applied : a convergence proof is a 
purely theoretical result, but it becomes important and alive only when the 
underlying algorithm is successful in practice. The applications govern the 
theory, over the long term. This is not the place to explain the finite 
element subroutines which compute the stiffness matrix K and the load 
vector F; what matters is that they are very fast and the algorithm is a 
success (of course it may not be immortal). Apparently the power of the 
computer is applied to the formulation of the discrete problem more 
effectively than in any previous technique; the solution Q is ordinarily still 
computed by an algorithm of Gauss. 

The convergence of the approximation us to u is governed by a single 
fundamental principle: if the energy form a(v, v) is positive definite, then 
in the intrinsic norm ||u||2 = a(v, v), the approximation us is the projection 
of the true solution u onto the subspace S. Therefore, 

(1) \\u - us\\ = min \\u - v\\9 
veS 

and convergence becomes a problem in approximation theory—to 
estimate the distance between u and S. Such an estimate will depend both 
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on the properties of u (its smoothness is predicted by the theory of elliptic 
equations) and on the degree of the polynomials in S. 

Elsewhere [6], [9] we have given a fuller discussion of approximation 
by piecewise polynomials, to which a great many authors have con­
tributed.3 Here we propose only to summarize the results, under two 
simplifying assumptions: 

(i) S contains all polynomials of degree less than or equal to p (p = 1 for 
the linear and bilinear spaces, p = 2 for quadratics, . . . ); 

(ii) the lengths of all edges lie between och and h. 
Then for any u with p + 1 derivatives, there is a v in the space S such that 

(2) | | I I - I ; | | ^ C V + 1 - - ' | N | P + 1 . 

When these represent maximum norms of the derivatives of order j and 
p H- 1, respectively, a simple choice of the approximating v is found by 
interpolating the nodal values of w, and the proof follows from Taylor 
series expansions. In mean-square (Sobolev) norms, the proof is more 
difficult—and more important, if the strain energy is itself a sum of 
squares of mth derivatives. In this strongly elliptic case, when the intrinsic 
norm satisfies ||t>|| ^ c \\v\\m, the rate of convergence follows immediately 
from (1) and (2): us is closer to u than the interpolating function v, and 
therefore 

(3) ll« - «sll = 0(h»+1-m). 

The method converges if and only if p ^ m. The rate of convergence 
predicted by (3) is completely confirmed by computational experiment, 
and justifies the increase from Courant 's value of p = 1. 

There are other questions in the convergence theory of finite elements, 
and we summarize very briefly two of the most fundamental.4 

1. The rate of convergence in other norms. It is important to estimate 
the error u — %, not only in the energy norm, but also in L2 or in the 
maximum norm. In L2 , Aubin and Nitsche independently discovered an 
argument based on duality (known as the Nitsche trick) which gives the 
correct estimate 

\\u - us\\0 = 0(hp+1 + h2(p+1~m)). 

Pointwise estimates, on the other hand, are not at all easy ; they are much 

3 The key lemma is due to Bramble and Hilbert. 
4 I hope the book [9] will serve as a general reference to the theory, and to the mathe­

matical and engineering literatures on finite elements. The subject has grown at a nearly 
absurd rate, and it looks as if convergence theorems can be proved almost at will. Perhaps 
that reflects not only the simplicity, but also the "rightness," of the underlying ideas. 
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less natural for variational problems, and except for regular meshes the 
problem is still open. 

2. Nonconforming elements and numerical integration. Both of these 
involve variational crimes; the basic rules of the Ritz process are broken, 
and the projection property (1) no longer holds. In the nonconforming 
case the trial functions have infinite energy, a(v, v) = oo, because of the 
way the polynomials are pieced together. To compensate, the energy is 
changed to a sum of integrals over the separate triangles, and the dis­
continuities at the boundaries are ignored. In numerical integration (which 
is standard in the finite element subroutines for calculating K and F) the 
underlying functional is altered in a different way—to a discrete sum. In 
the example of Poisson 's equation, the functional which is actually mini­
mized is 

I wtó + v2
y - ima 

The weights wt and evaluation points £,. come from a quadrature formula. 
In both cases, convergence is no longer an automatic consequence of 

the approximation properties of S. There is an extra test for the consistency 
of the discrete problem, and, in fact, nonconforming elements usually 
fail this test; convergence becomes the exception rather than the rule. 
The test is this: around an arbitrary patch of elements, impose boundary 
conditions in such a way that the true solution u is a polynomial of degree 
m, and look to see whether us coincides identically with u. (All polynomials 
of degree m are present in S, by the earlier necessary condition p ^ m.) 
This patch test was devised by Irons, and for a large class of problems 
[2], [7] it implies convergence of order h in the energy norm. There is also 
a higher-order patch test for the more rapid convergence which goes with 
more accurate numerical integration. 

EXAMPLE. Consider the space of piecewise linear functions which are 
constrained only by continuity at the midpoints of the edges between 
triangles. These midpoints become the nodes and the space is three times 
larger than Courant 's. It is much more useful in applications to fluid 
dynamics, where the constraint of zero divergence annihilates Courant 's 
space. Nevertheless, the space is nonconforming—there is a jump in v 
which varies linearly along the edge and vanishes at the midpoint. This 
property turns out to be the key to the patch test. After an application of 
Green's theorem [9], success in the test is assured if along each edge, the 
integral of the jump is zero. A linear function which vanishes at the middle 
of its domain does have zero integral, so that in spite of its illegitimate 
construction, the nonconforming us will converge to u. 

The piecewise polynomial spaces Sq
p. There is a natural question about 

piecewise polynomials which apparently has never been asked or 
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answered. It concerns the polynomials of degree p and continuity class 
Cq on a given triangulation (or on a given simplicial complex in Rn). What 
is the dimension of this space Sq

p, and what is a convenient basis! 
In two variables, only the case q = 0 is understood; S? *s Courant's 

space, and the quadratic and cubic spaces S® and S3 were described earlier. 
Sp is a finite element space with (p + l)(p + 2)/2 nodes Zj distributed 
uniformly over each triangle, at the points with barycentric coordinates 
(i/p,j/p,k/p). For every node there is a basis function, determined by 
(Pj(Zi) = ôtj. If there are F vertices, the dimension is essentially p2V. 

In one variable the question would be comparatively simple. Over each 
subinterval the polynomial has p + 1 coefficients, with q + 1 continuity 
constraints imposed at the joints. Therefore the dimension is (p — q)V, 
again excluding correction terms from the extreme endpoints. The case 
q = p — 1 represents Schoenberg's splines, and illustrates how an 
increase in continuity spreads the support of the basis functions: the 
so-called "5-splines" are supported over p + 1 subintervals and the basis 
is no longer local. This produces serious difficulties at the boundaries of a 
domain, and explains why splines are not much used in finite element 
computations. We mention that on a square rather than a triangular mesh 
in the plane, the question remains simple: the space is a tensor product of 
one-dimensional spaces and its dimension is (p — q)2V. 

The first interesting and unresolved case is that of piecewise cubics of 
class C1. We propose to compute its dimension heuristically, as follows. 
There are ten parameters in the cubic over each triangle, or 10T alto­
gether. Across each edge we need four constraints to assure continuity, 
and three more for continuity of the normal derivative (which is a 
quadratic). This produces IE constraints, but they are not independent. 
Around any vertex, the quantities v9 vX9 and vy are now certain to be 
continuous between each triangle and the next. But then continuity 
between the last triangle and the first, as we circle the vertex, is a redundant 
constraint—of which there are 3V. Therefore the total number of free 
parameters is 

10T - IE + 3V = 20F - 217 + 3V = 2V. 

This we conjecture to be the dimension of S3 ; we have no ideas about its 
basis. 

REMARK. A similar calculation for C1 piecewise quadratics suggests 
that there are none. Powell has convinced us, however, that on a special 
triangulation (a square mesh, with all diagonals drawn in) there do exist 
such quadratics with compact support. Apparently, with this triangula­
tion, there is an extra redundancy of the constraints. 

Our questions about Sq
p can be made simpler and more precise in the 
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following way. Let the unit square be divided into N 2 small squares, and 
then into IN2 triangles by the diagonals of slope + 1 . We impose periodic­
ity at the outer boundaries of the large square, so that each v in Sq

p can be 
extended to a doubly 1-periodic function on the whole plane. Then, not 
asymptotically but exactly, there are N2 vertices, 2N2 triangles, and 
3JV2 edges. On this triangulation we can count the parameters, 
constraints, and redundancies, with the following result: 

CONJECTURE. For p > 2q, dim Sq
p = (p - q)(p - 2q)N2. 

In the case p = 3, g = 1, this reproduces the 2V computed earlier. And 
for the spaces S°, the dimension p2V is correct. 

We also believe that there should exist M = (p — q)(p — 2q) functions 
\jjh whose translates 

<M*> y) = U* - J/N, y - k/N), j , k = l , . . . , AT, 
form a basis for Sq

p. Like the splines in one variable, these ^ will be sup­
ported over a number of adjacent triangles, probably too many for the 
existence of a nodal (finite element) basis. 

In this form the problem invites a Fourier transformation. There is 
translation invariance, and the degree of continuity which is awkward 
to determine at edges and vertices of triangles becomes obvious from the 
Fourier transform. Furthermore, these transforms are not impossibly 
complicated; they are ratios of exponential polynomials to polynomials. 
But the actual construction of the i/̂  is genuinely an open problem. 
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