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The aim of this paper is to give a few observations with no proofs about 
the four color problem that are topological in nature. The approach is to 
define a 'local' 4 coloring on any 2-manifold and to measure the obstruc­
tions to a local coloring's being a desired type of coloring. All manifolds 
will be assumed to be oriented. 

1. Local colorings. We begin with the definitions of four types of 
coloring that are possible on any surface. 

(1) A four coloring of a triangulation K is a map f:K-+ 5A3 which is 
simplicial, and maps triangles onto triangles. Here ÖA3 is the tetrahedron, 
which has exactly 4 vertices. 

(2) An edge coloring of K is a division of the edges of K into 3 sets, so 
that every triangle of K has an edge in each set. If we think of the sets as 
colors, every triangle has its edges 3 different colors. 

(3) A heawood coloring is an assignment of + 1 or — 1 to every triangle 
of K so that the sum of the values on the triangles containing a point p is 
zero mod 3 for all vertices/? of K. 

(4) A local coloring is a collection of maps fp:st(p) -> ÔA3 and auto­
morphisms apq of dA3 so that the following commutes. 

st(p) n st{q) 

i 
M 3 -g-* 3A3 

In this definition, st(p) is the complex consisting of all triangles (and 
faces of them) containing p. apq can be given as a permutation of the 4 
vertices of ÔA3. We can restate the definition by saying we have a 4 
coloring for each st(p) and, up to permutation of colors, the colorings of 
st(p) and st(q) agree on their overlap. 

Next, we show how each type of 'coloring' induces the following one. 
Let ƒ : K -» <3A3 be a four coloring. 3A3 has an edge coloring, so we get an 
edge coloring for K by pulling back the one on 3A3. That is, the color of 
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edge e is that of f{e). 
If we have an edge coloring, we pick a definite order for the colors, say 

abc. If the 3 colors of a triangle, going in the positive direction are abc, we 
assign the triangle + 1 . If they are acb, we assign — 1. This turns out to be a 
heawood coloring. 

Suppose we have a heawood coloring. It is not hard to show that, on 
st(p), the heawood coloring is induced by a 4 coloring. The collection of 
these 4 colorings (and appropriate apq) gives a local coloring. 

In the case of the sphere (or any simply connected region) all of these 
ways of coloring are equivalent. However, it is easy to find edge colorings 
of the torus which are not induced by any 4 coloring, etc. To describe this 
phenomena, we see that if a is a local coloring, then there is a map 

S(4) is the symmetric group on 4 letters, viewed as the automorphism 
group of the tetrahedron. One way to see this map is to view the definition 
of local coloring as defining a fiber bundle with structure group 5(4). 
IJ/(QL) is then the characteristic map. We have the following 

THEOREM 1. Let cube a local coloring of M. Then 
a is induced by a A coloring iff Im i/f(a) = (1), 
a is induced by an edge coloring iff Im t/r(a) ^ Z2® Z2, 
a is induced by a heawood coloring iff Im \j/(a) <= -4(4). 

The groups appearing are all the normal subgroups of S(4). The 
correspondence between type of coloring and subgroup is given, for 
example, by Z2® Z2 = subgroup of S(4) which preserves a fixed edge 
coloring of <9A3. 

If we have a local coloring a, and wonder if it is induced by a heawood 
coloring, we just check the image of the map 

ii/(ay:TIl(M)-+S(4)/A(4)KZ2. 

Similarly, to see if a heawood coloring is induced by an edge coloring, we 
have a map 

Ma)"lU^M) -+ A{4)/Z2 0 Z 2 « Z 3 . 

2. Conjectures. It is well known that one cannot color an arbitrary 
2-manifold with 4 colors. For instance, there are triangulations of the 
torus that require 7 colors. Our approach is not to increase the number 
of colors but to change the type of coloring. Thus we formulate the 

Generalized 4 Color Conjecture (G4CC). Every triangulation of an 
orientable 2-manifold has an edge coloring. 

If one allows nonorientable surfaces, there is a counterexample. Take 
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the icosahedron, and identify antipodal points. The resulting triangula­
tion of the projective plane has no edge coloring, heawood coloring, or 
even local coloring. The dual of this triangulation is known as the 
Peterson graph. 

Recall that the degree of a vertex in a triangulation is the number of 
triangles containing it. An even surface is one whose interior vertices all 
have even degree. If R and S are two triangulations, we can form the 
connected sum, RffiS, by removing one triangle from R and one from S, 
and joining the 2 surfaces so obtained along the boundaries of the 
triangles. 

THEOREM 2. R ^ S has an edge coloring iff both R and S have one. 

We can construct on the torus a special triangulation X with the 
property that there are only 2 vertices of X whose degree is odd, and those 
2 vertices lie on the same triangle. Using this triangulation X and 
Theorem 2, we can prove 

THEOREM 3. If every even surface has an edge coloring, then G4CC is 
true. 

3. Other descriptions of local colorings. Suppose a is a local coloring 
of K. Let e be an edge of X, and/) a vertex of e. Under the map fp9 the two 
triangles containing e either map to the same or different triangles. If they 
map to different triangles, call e nonsingular. Otherwise call e singular. 
The concept of singularity and nonsingularity is well defined, and provides 
a convenient way of representing local colorings. If we label a nonsingular 
edge with 1, and a singular edge with 0, we can ask for ways of telling if a 
cycle of 0's and l's could be the cycle around a vertex in a local coloring. 
For instance, 1, 1, 0, 0 could not be. There are some straightforward 
algorithms. The next result is not obvious however: 

THEOREM 4. Let S be a cycle of 0's and Vs. Then S could be the cycle of 
singular and nonsingular edges around a vertex of a local coloring iff there 
is a triangulation K of a disk M such that 

(1) K is even, 
(2) the cycle of degrees mod 2 of dK is S. 

4. Stieffel Whitney class of a local coloring. Suppose a is a local color­
ing. We put sw(a), the Stieffel-Whitney class of a, to be the Z 2 chain of all 
the singular edges. If M is an even triangulation, there is a canonical local 
coloring given by having every edge singular. If M is the barycentric 
subdivision of some other triangulation and hence even, then the Stieffel-
Whitney class of this special local coloring is just the topological Stieffel-
Whitney class. 
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It is a fact that sw(cc) is a cycle, and so represents a class of H^M; Z2). 
The next result shows how this class measures the obstruction to a's 
being a heawood coloring. 

THEOREM 5. Let cube a local coloring of M. Define \J/{CL) by 

Tl^M) - H,{M) - H^M; Z2) 

z2 

Then for any X e H^M; Z2), sw(a.) n X = i/^a) [X] . 

COROLLARY, a is induced by a heawood coloring iff sw(<x) = 0 in 
HW, Z2). 

We would like to have a similar result when a heawood coloring is 
induced by an edge coloring. 

5. Kempe cycles and color cycles. Suppose K is a triangulation, and a 
and P are two local colorings. Let a + P be the chain which is the Z 2 sum 
of nonsingular edges of a and ƒ?. Such a chain is actually a Z 2 cycle, and is 
called a color cycle of a (or /?). Another way to see this is that, if y is a color 
cycle of a and we change all nonsingular edges of K lying in y to singular, 
and vice versa, we get another local coloring. 

DEFINITION. A Kempe cycle y of a local coloring a is 
(1) a Z 2 cycle, 
(2) locally 2 colored. That is, for any /?, f(st(p) n y) contains at most 2 

vertices. 

THEOREM 6. A Kempe cycle of cuis a color cycle of a. 

If we start with a local coloring, and get a new local coloring /? by 
changing the edges of a Kempe cycle y, we say a is related to p. Extending 
this relation to an equivalence relation, we get Kempe equivalence classes 
of local colorings. For the sphere, this is the same as the usual definition. 

REMARK. Suppose we change a local coloring a along a color cycle y9 

obtaining a local coloring p. Then sw(cc) + y = sw(P). 
This remark, combined with the corollary, shows us that if we start 

with a local coloring a of M and can find a color cycle y such that 
SW(OL) = y in Ht(M; Z2), then M has a heawood coloring. 

Question. For a fixed local coloring a of M, which classes of H^M; Z2) 
are represented by 

(1) Kempe cycles, 
(2) color cycles. 
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We cannot answer these, but if we slightly weaken the conditions we 
get some partial results. Let an assignment of singular and nonsingular 
edges of M be called a local coloring with a singularity if, at all points 
except perhaps one, there are maps fp as in the definition. A Kempe cycle 
with singularity of a local coloring is a Z 2 chain which is locally 2 colored 
at all but perhaps one point. A color cycle with singularity is the sum of a 
local coloring and a local coloring with singularity. There are no singular 
objects on any simply connected region. 

THEOREM 7. If a is a local coloring, y a color cycle with singularity, and 
sw[oc) = y in HX(M; Z2) then if we change a along y, we get a heawood 
coloring. 

DEFINITION. M is sufficiently fine if there is a vertex p of M and paths of 
triangles containing p such that 

(1) any two paths of triangles meet only in/7, 
(2) the paths contain generators of H^M). 
For a given triangulation, some iterated barycentric subdivision is 

sufficiently fine. 

THEOREM 8. If M is a triangulation such that 
(1) M is sufficiently fine, 
(2) M is even, 

then M has a heawood coloring. 

This follows from the fact that every class of H^M; Z2) is represented 
by a Kempe chain with a singularity. 

CONJECTURE. For any local coloring of a triangulation M, every class 
of H^M; Z2) is represented by a Kempe cycle (color cycle) with a 
singularity. 

6. Trying to prove the 4 color conjecture. We end this paper with an 
outline of how to prove the 4-color conjecture (generalized). 

(1) Remove the topological restrictions in Theorem 8 or decide the last 
conjecture. 

(2) Find a class in H^M; Z3) measuring the obstruction to a heawood 
coloring's being an edge coloring. 

(3) From what was learned in solving 1, show how to 'deform' a heawood 
coloring to an edge coloring. 
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