FUNCTIONS ON MULTIPLIERS OF p-FOURIER ALGEBRAS

BY MICHAEL J. FISHER¹

Communicated by R. Seeley, January 22, 1973

I. **Introduction.** Let G denote a locally compact abelian (LCA) group and let Γ denote the group which is dual to G. If $1 \le p \le \infty$, let $L_p(G)$ (or $L_p(\Gamma)$) denote the space of p-power integrable functions with respect to Haar measure on G (or on Γ); let C(G) denote the algebra of bounded continuous functions on G and let $C_0(G)$ consist of those functions in C(G) which vanish at infinity. In [2] and [3] Figa-Talamanca and Figa-Talamanca and Gaudry studied the p-Fourier algebra

$$A_{p}(\Gamma) = \left[L_{p}(\Gamma) \, \hat{\otimes} \, L_{p'}(\Gamma) \right] / K$$

where $1 \leq p < \infty$, p' is conjugate to p, $\hat{\otimes}$ is the projective tensor product, and K denotes the kernel of the convolution operator $c: L_p \otimes L_{p'} \to C_0(\Gamma)$ by $c(f \otimes g)(y) = f * g(y)$. $A_p(\Gamma)$ carries the quotient norm. Herz [7] showed that $A_p(\Gamma)$ is a Banach algebra under pointwise multiplication. In [2] Figa-Talamanca showed that the dual space of $A_p(\Gamma)$ is isometrically isomorphic to the space $M_p(\Gamma)$ of bounded, translation invariant, linear operators on $L_p(\Gamma)$ and that the weak operator topology on $M_p(\Gamma)$ and the weak*-topology agree on bounded sets. Implicit in [2] is the fact that $A_2(\Gamma)$ is isometrically isomorphic with $A(\Gamma)$, the algebra of Fourier transforms of integrable functions on G; $A(\Gamma)$ is equipped with the inherited norm; see also [1]. Hewitt's factorization theorem is used in [3] to prove that $A_1(\Gamma)$ is $C_0(\Gamma)$ ($C(\Gamma)$) when Γ is compact).

Let $B_p(\Gamma)$ denote the algebra of functions f in $C(\Gamma)$ which satisfy: $f(\gamma)h(\gamma) \in A_p(\Gamma)$ whenever $h \in A_p(\Gamma)$. $B_p(\Gamma)$ is a commutative and semisimple Banach algebra under pointwise addition and multiplication when it is equipped with the operator norm; $B_p(\Gamma)$ is the algebra of bounded multipliers on $A_p(\Gamma)$. If 1 and if <math>p' denotes the index conjugate to p, then $A_{p'} = A_p$ and $B_{p'} = B_p$, so that we may restrict p to $1 . It is easy to see that <math>B_1(\Gamma) = C(\Gamma)$, and Helson's theorem [11, p. 73] says that $B_2(\Gamma)$ is the algebra of Fourier transforms of bounded measures on G with the inherited norm. Since the inclusions $A_2(\Gamma) \subset A_p(\Gamma) \subset A_1(\Gamma)$ are continuous if 1 , it follows that the maximal

AMS (MOS) subject classifications (1970). Primary 43A22; Secondary 46L20.

Key words and phrases. Functions of Gel'fand transforms, multipliers on L_r , p-Fourier algebra, multipliers of Fourier algebras, isomorphisms of Fourier algebras.

¹ Research supported in part by NSF grant GP-24574.

ideal space of $A_p(\Gamma)$ can be identified with Γ . Thus $B_p(\Gamma)$ is an algebra of multipliers in the sense of Larsen [9]; we refer to this monograph for the basic facts regarding multiplier algebras.

The purpose of this note is to show that the only complex valued functions of a complex variable which operate on (the Gel'fand transforms of) $B_p(\Gamma)$ are entire functions when Γ is not compact. If Γ is compact, $A_p(\Gamma) = B_p(\Gamma)$ and the class of functions which operates on $B_p(\Gamma)$ is less restrictive. When Γ is not compact, this will imply that the algebra $B_p(\Gamma)$ is not selfadjoint and not regular and that Γ is not dense in the maximal ideal space of $B_p(\Gamma)$. The basic result (Theorem 1, below) from which this information follows can also be used to describe the isometric isomorphisms of $A_p(\Gamma)$ onto $A_p(\Lambda)$ when Λ is a second LCA group. A detailed development of these topics will be given in [5].

II. Functions operating on multipliers. In [6] Hahn proved that if $1 \le p \le 2$ and if $f \in L_p(\Gamma)$ and $g \in L_p(\Gamma)$, then h(y) = f * g(y) is the Fourier transform of an operator T_h in $M_r(G)$ if $|1/r - \frac{1}{2}| \le |1/p - 1|$ for which $||T_h||_r \le ||f||_p ||g||_{p'}$. We have the following extension of this result.

THEOREM 1. Let $1 \le p \le 2$ and let $|1/r - \frac{1}{2}| \le |1/p - 1|$. Then f in $B_p(\Gamma)$ is the Fourier transform of an operator T_f in $M_r(G)$ and the map $f \to T_f$ faithful, norm decreasing representation of $B_p(\Gamma)$ as an algebra of bounded, translation invariant operators on $L_r(G)$.

It is clear that Hahn's map $h \to T_h$ extends to a norm decreasing isomorphism of $A_p(\Gamma)$ into $M_r(G)$. Now Hahn's Lemma 1 and the fact that $A_p(\Gamma)$ has a bounded approximate identity (since $A_2(\Gamma)$ does) can be used to extend $h \to T_h$ to all of $B_p(\Gamma)$.

The Fourier transforms of bounded measures on G are elements of $B_p(\Gamma)$; denote this subalgebra by $B_2(\Gamma)$.

THEOREM 2. Suppose that Γ is not compact and that 1 . Let <math>F be a complex valued function defined on [-1, 1] for which $F(\hat{\mu}(\gamma)) \in B_p(\Gamma)$ for every $\hat{\mu} \in B_2(\Gamma)$ with range in [-1, 1]. Then F admits an extension to all of C as an entire function.

This follows from Igari's Theorem 1 of [8] and from Theorem 1 above. When Γ is compact but not discrete, F must be analytic in a neighborhood of [-1, 1].

Now, by reasoning as in [11, Chapter 6] or as in [8], one may conclude that

THEOREM 3. Suppose that Γ is noncompact and that 1 . Then:1. If <math>F is a complex valued function of a complex variable for which $F(\hat{f})$ is the Gel'fand transform of a function in $B_p(\Gamma)$ whenever \hat{f} is, then F is an entire function.

- 2. For any complex number z there is a real valued function f in $B_p(\Gamma)$ and a complex homomorphism h of $B_p(\Gamma)$ for which h(f) = z.
 - 3. $B_p(\Gamma)$ is not selfadjoint and not regular.
 - 4. Γ is not dense in the maximal ideal space of $B_{\nu}(\Gamma)$.
- 5. There is a function f in $B_2(\Gamma) \subset B_p(\Gamma)$ with $f \geq 1$ on Γ for which f^{-1} is not in $B_p(\Gamma)$.

The analogy between $B_p(\Gamma)$ and $B_2(\Gamma)$ does not end here, but we shall wait to describe the situation more completely in [5].

III. **Isomorphism.** Let Γ and Λ be LCA groups and let $A_p(\Gamma)$ and $A_p(\Lambda)$ denote their respective *p*-Fourier algebras for $1 . It follows from Theorem 1 of §II and from a theorem of Strichartz [12] that the only isometric multipliers on <math>A_p(\Gamma)$ are complex unit multiples of characters on Γ . This is the basic fact needed to prove

THEOREM 4. If Φ is an isometric isomorphism of $A_p(\Gamma)$ onto $A_p(\Lambda)$, then there is a topological isomorphism α of Λ onto Γ and an element γ_0 of Γ such that $\Phi(h)(\lambda) = h(\gamma_0 + \alpha(\lambda))$.

COROLLARY 4.1. Γ is topologically isomorphic to Λ if and only if $A_p(\Gamma)$ is isometrically isomorphic to $A_p(\Lambda)$; i.e. $A_p(\Gamma)$ determines Γ .

The proof relies on the facts that Φ extends to $B_p(\Gamma)$, that Φ maps isometric multipliers to isometric multipliers, and that G is topologically isomorphic to the multipliers $\{g_0(\gamma) \mid g_0 \in G\}$ when this group is equipped with the strong operator topology.

 $A_p(\Gamma)$, $B_p(\Gamma)$, and $M_p(\Gamma)$ forms an interrelated system of algebras which we first studied in [4]. There, we proved Theorem 1 of §II in the context of a continuity theorem of Lévy type for $M_r(G)$. No applications of Theorem 1 were given in [4].

REFERENCES

- 1. P. Eymard, *L'algébra de Fourier d'un groupe localment compact*. Bull. Soc. Math. France 92 (1964), 181–236. MR 37 #4208.
- 2. A. Figa-Talamanca, Translation invariant operators on L_p , Duke Math. J. 32 (1965), 495–501. MR 31 #6095.
- **3.** A. Figa-Talamanca and G. I. Gaudry, *Density and representation theorems for multipliers of type* (p, q), J. Austral. Math. Soc. 7 (1967), 1–6. MR **35** #666.
- **4.** M. J. Fisher, Recognition and limit theorems for L_p -multipliers, Studia Math. **50** (to appear).
 - 5. ——, Multipliers and p-Fourier algebras, Studia Math. (to appear).
- 6. L.-S. Hahn, On multipliers of p-integrable functions, Trans. Amer. Math. Soc. 128 (1967), 321-335. MR 35 #4677.
- 7. C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82. MR 42 #7833.

- **8.** S. Igari, Functions of L_p -multipliers, Tôhoku Math. J. **21** (1969), 304–320.
- 9. R. Larsen, *The multiplier problem*, Lecture Notes in Math., vol. 105, Springer-Verlag, Berlin, 1969.
- 10. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N.J., 1953. MR 14, 883.
- 11. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.
- 12. R. Strichartz, *Isomorphisms of group algebras*, Proc. Amer. Math. Soc. 17 (1966), 858–862. MR 33 #1751.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MONTANA, MISSOULA, MONTANA 59801