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1. Introduction. Let M be a closed, orientable 3-manifold which is 
defined by a Heegaard splitting of genus g. Each such Heegaard splitting 
may be associated with a self-homeomorphism of a closed, orientable 
surface of genus g (the surface homeomorphism is used to define a pasting 
map) and it will be assumed that this surface homeomorphism is given as 
a product of standard twist maps [3] on the surface. We assert: 

THEOREM 1. If M is defined by a Heegaard splitting of genus ^ 2 , then an 
effective algorithm exists to decide whether M is topologically equivalent to 
the 3-sphere S3. This algorithm also applies to a proper subset of all 
Heegaard splittings of genus > 2 . 

This result is of interest because it had not been known whether such an 
algorithm was possible for g ^ 2, and also because the algorithm has a 
possible application in testing candidates for a counterexample to the 
Poincaré conjecture. 

In this note we will describe the algorithm, and sketch a brief proof. 
Related results about the connections between representations of 3-
manifolds as Heegaard splittings, and as branched coverings of S3, are 
summarized at the end of this paper. A detailed report will appear in 
another journal. 

2. The algorithm. Let Xg be a handlebody of genus g ^ 0 which is 
imbedded in Euclidean 3-space as illustrated in Figure 1. Let X'g be a 
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FIGURE 1. THE HANDLEBODY Xc 
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second handlebody, which is so related to Xg that a translation T parallel 
to the x-axis maps Xg onto X'g. Let $ be a homeomorphism of dXg -* dXg. 
Let M = XgKj0 Xg be the 3-manifold which is obtained by identifying 
the boundaries of Xg and Xg according to the rule T<D(Z) = z, z e dXg. 
Every closed 3-manifold M admits such a representation. 

Let c be a simple closed curve on dXg, and let yc be a twist about c (see 
[3], [4]). It was proved in [4] that if g > 0, then every homeomorphism 
of dXg -• 5Xff is isotopic to a product of twists yc. about the curves c£, 
1 ^ i: ^ 3gf — 1, in Figure l.3 We will make the assumption that our 
homeomorphism <D is given as a product of the particular twists yCl, . . . , 
yC2g + r This involves no loss in generality if g ;g 2, but if g > 2 the class 
of maps <I> which can be so represented is somewhat restricted. We are now 
ready to state the algorithm for deciding whether M = XgKj0 Xg is 
homeomorphic to S3. 

Step 1. Given the homeomorphism 

(i) * = fd, ' • • y%r 

where each st = ± 1 , and each fxt is between 1 and 2g + 1, construct a 
diagram of the (2g + 2)-string braid 

(2) £ = <••• < 
where cr. is a standard generator of the braid group (see [1]). The braid at 

is illustrated in Figure 2. 

G 

• • • 

FIGURE 2. THE BRAID a; 

Ste/? 2. Using the braid ƒ?, construct a link L, given in projection, by 
joining the ends of the braid jS in pairs according to the rule illustrated in 
Figure 3. The top of string 21 + 1 is connected to the top of string 2/ + 2, 
for i = 0, . . . , g; the bottom of string 2i + 1 is connected to the bottom 
óf string 2i + 2 for each i = 0, . . . , g. The resulting link is said to be 
displayed as a "plat". 

3 If # = 0 every homeomorphism O is isotopic to the identity map, the set {cj is empty, 
and M ~ S3. If g = 1, the twist maps yCi and yC3 are isotopic, hence only two twist maps 
yc and y are needed. 
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1 (2g + 2)-string braid | 

b"T7 d 
FIGURE 3. (2g + 2> STRING PLAT 

Step 3. Verify (by checking the projection) whether the plat L has 
multiplicity 1. This is a necessary condition for M ~ S3. If so, apply the 
algorithm given by Haken in [2], or by Schubert in [5], to decide whether 
L is the trivial knot. We assert that M ~ S3 if and only if L is the trivial 
knot. 

3. Sketch of proof. We can assume without loss in generality that the 
embedding of Xg and X'g in 3-space É3 is chosen in such a way that both 
Xg and Xg are invariant under a rotation Q of 180° about the x-axis. 
There is also no loss in generality in assuming that the twist maps 
yCl, . . . , yC2g + i a r e defined in such a way that each yc. commutes with the 
rotation Q. Since the translation T likewise commutes with Q, it follows 
that 

(3) (T<D)Q = Q(T<D). 

Let M/Q be the orbit space of M = Xg u 0 Xg under the action of Q, and 
let p be the natural projection from M to M/Q. The condition (3) ensures 
that M/Q is well defined. The quotient spaces Xg/Q and X'JQ are each 
homeomorphic to 3-balls, hence 

(4) M/Q = (Xg/Q)[Jpop-i(X'g/Q) 

is represented as a genus zero Heegaard splitting, hence M/Q must be 
homeomorphic to S3. Thus the triplet (p, M, M/Q) exhibits M as a 2-
sheeted branched covering of S3. The branching set is the image under p 
of the fixed point set of Q, that is of the set (Xg n x-axis) u (Xg n x-axis). 

To understand the structure of the branching set, observe that the 
surface homeomorphism p<Dp-1 which defines the Heegaard splitting of 
M/Q is a homeomorphism of S2 -+ S2, and hence it is isotopic to the 
identity. This isotopy can be used to define a homeomorphism F of 
M/Q —» M/Q, and it can be shown that the image of the fixed point set of 
Q under the product Fp is precisely the link L described in Steps 1 and 2 
of the algorithm. 
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Suppose that M is homeomorphic to S3. Then by a theorem of 
Waldhausen [7] the fixed point set of Q must be the trivial knot, hence its 
image under Fp must also be trivial. Therefore a necessary condition for 
M ~ S3 is that L have a single, unknotted component. The algorithm 
given in [2] and [5] enables us to test whether L is, in fact, trivial. If it is 
trivial, then M is the 2-fold branched covering of S3 branched over the 
trivial knot. But then, M ~ S3, hence the condition is also sufficient. 

We remark that if Waldhausen's result [7] could be extended to 
transformations of period p > 2, then our algorithm could be extended to 
the class of all 3-manifolds which admit representations as/7-fold branched 
cyclic coverings of S3. It is not known whether this includes all closed 
3-manifolds.4 

4. Related results. The Heegaard genus of a 3-manifold M is the 
smallest integer g such that M admits a Heegaard decomposition 
Xg u 0 Xg. The bridge number b of a link L is the smallest integer n such 
that L can be exhibited in a ô-bridge presentation [6]. The braid number 
n of a link L is the smallest integer n such that L can be represented as a 
closed braid with «-strings [1]. (This is not the same as a "plat".) 

COROLLARY 1. Every 3-manifold of 'Heegaard genus g ^ 2 can be exhibited 
as a 2-fold branched cyclic covering of S3, branched over a knot or link of 
bridge number g + 1. The two-fold branched cyclic covering of S3 branched 
over a knot or link of bridge number b is a 3-manifold of Heegaard genus 
^ b — 1. (This generalizes a result due to Schubert [6].) 

THEOREM 2. The p-fold branched cyclic covering of S3, branched over a 
knot of braid number n, is a 3-manifold of Heegaard genus ^(/? — \)(n — 1), 
for every p ^ 2. 

REFERENCES 

1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1926), 47-72. 
2. W. Haken, Theorie der Normalflâchen, Acta Math. 105 (1961), 245-375. MR 25 

#4519a. 
3. W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of 

Math. (2) 76 (1962), 531-540. MR 27 # 1929. 
4. , A finite set of generators for the homeotopy group of a 2-manifold, Proc. 

Cambridge Philos. Soc. 60 (1964), 769-778. MR 30 # 1500. 
5. H. Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 

(1961), 116-148. MR 25 #4519b. 
6. - , Knoten mit zwei Brücken, Math. Z. 65 (1956), 133-170. MR 18, 498. 

4 A new result of J. Montisinos establishes that this does not include all closed 3-manifolds. 
See J. Montisinos, 3-Variétés qui ne sont pas revêtements cycliques ramifés sur S3, (to appear). 



1010 J. S. BIRMAN AND H. M. HILDEN 

7. F. Waldhausen, Über Involutionen der 3-Sphàre, Topology 8 (1969), 81-91. MR 38 
#5209. 

DEPARTMENT OF MATHEMATICS, STEVENS INSTITUTE OF TECHNOLOGY, HOBOKEN, NEW 

JERSEY 07030 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822 

Current address (Joan Birman): Department of Mathematics, Columbia University, 
New York, New York 10027. 


