THE HOMEOMORPHISM PROBLEM FOR S3 BY JOAN S. BIRMAN¹ AND HUGH M. HILDEN² Communicated by William Browder, January 22, 1973 1. **Introduction.** Let M be a closed, orientable 3-manifold which is defined by a Heegaard splitting of genus g. Each such Heegaard splitting may be associated with a self-homeomorphism of a closed, orientable surface of genus g (the surface homeomorphism is used to define a pasting map) and it will be assumed that this surface homeomorphism is given as a product of standard twist maps $\lceil 3 \rceil$ on the surface. We assert: THEOREM 1. If M is defined by a Heegaard splitting of genus ≤ 2 , then an effective algorithm exists to decide whether M is topologically equivalent to the 3-sphere S^3 . This algorithm also applies to a proper subset of all Heegaard splittings of genus > 2. This result is of interest because it had not been known whether such an algorithm was possible for $g \ge 2$, and also because the algorithm has a possible application in testing candidates for a counterexample to the Poincaré conjecture. In this note we will describe the algorithm, and sketch a brief proof. Related results about the connections between representations of 3-manifolds as Heegaard splittings, and as branched coverings of S^3 , are summarized at the end of this paper. A detailed report will appear in another journal. 2. The algorithm. Let X_g be a handlebody of genus $g \ge 0$ which is imbedded in Euclidean 3-space as illustrated in Figure 1. Let X_g' be a AMS (MOS) subject classifications (1970). Primary 55A40, 55A25, 57A10; Secondary 02E10. ¹ The work of the first author has been supported in part by NSF grant #GP-34324X. ² The work of the second author has been supported in part by NSF grant #GP-34059. second handlebody, which is so related to X_g that a translation τ parallel to the x-axis maps X_g onto X_g' . Let Φ be a homeomorphism of $\partial X_g \to \partial X_g$. Let $M = X_g \cup_{\Phi} X_g'$ be the 3-manifold which is obtained by identifying the boundaries of X_g and X_g' according to the rule $\tau\Phi(z) = z$, $z \in \partial X_g$. Every closed 3-manifold M admits such a representation. Let c be a simple closed curve on ∂X_g , and let γ_c be a twist about c (see [3], [4]). It was proved in [4] that if g>0, then every homeomorphism of $\partial X_g\to \partial X_g$ is isotopic to a product of twists γ_{c_i} about the curves c_i , $1\le i\le 3g-1$, in Figure 1.³ We will make the assumption that our homeomorphism Φ is given as a product of the particular twists $\gamma_{c_1},\ldots,\gamma_{c_{2g+1}}$. This involves no loss in generality if $g\le 2$, but if g>2 the class of maps Φ which can be so represented is somewhat restricted. We are now ready to state the algorithm for deciding whether $M=X_g\cup_{\Phi}X_g'$ is homeomorphic to S^3 . Step 1. Given the homeomorphism $$\Phi = \gamma_{c_{u_1}}^{\varepsilon_1} \cdots \gamma_{c_{u_n}}^{\varepsilon_r}$$ where each $\varepsilon_i = \pm 1$, and each μ_i is between 1 and 2g + 1, construct a diagram of the (2g + 2)-string braid $$\beta = \sigma_{c_{\mu_1}}^{\varepsilon_1} \cdots \sigma_{c_{\mu_r}}^{\varepsilon_r}$$ where σ_i is a standard generator of the braid group (see [1]). The braid σ_i is illustrated in Figure 2. FIGURE 2. THE BRAID σ_i Step 2. Using the braid β , construct a link L, given in projection, by joining the ends of the braid β in pairs according to the rule illustrated in Figure 3. The top of string 2i + 1 is connected to the top of string 2i + 2, for $i = 0, \ldots, g$; the bottom of string 2i + 1 is connected to the bottom of string 2i + 2 for each $i = 0, \ldots, g$. The resulting link is said to be displayed as a "plat". ³ If g=0 every homeomorphism Φ is isotopic to the identity map, the set $\{c_i\}$ is empty, and $M\sim S^3$. If g=1, the twist maps γ_{e_1} and γ_{e_3} are isotopic, hence only two twist maps γ_{e_1} and γ_{e_2} are needed. FIGURE 3. (2g + 2)-STRING PLAT - Step 3. Verify (by checking the projection) whether the plat L has multiplicity 1. This is a necessary condition for $M \sim S^3$. If so, apply the algorithm given by Haken in [2], or by Schubert in [5], to decide whether L is the trivial knot. We assert that $M \sim S^3$ if and only if L is the trivial knot. - 3. **Sketch of proof.** We can assume without loss in generality that the embedding of X_g and X'_g in 3-space E^3 is chosen in such a way that both X_g and X'_g are invariant under a rotation Ω of 180° about the x-axis. There is also no loss in generality in assuming that the twist maps $\gamma_{c_1}, \ldots, \gamma_{c_{2g+1}}$ are defined in such a way that each γ_{c_i} commutes with the rotation Ω . Since the translation τ likewise commutes with Ω , it follows that $$(\tau \Phi)\Omega = \Omega(\tau \Phi).$$ Let M/Ω be the orbit space of $M=X_g\cup_{\Phi}X_g'$ under the action of Ω , and let ρ be the natural projection from M to M/Ω . The condition (3) ensures that M/Ω is well defined. The quotient spaces X_g/Ω and X_g'/Ω are each homeomorphic to 3-balls, hence (4) $$M/\Omega = (X_g/\Omega) \left(\int_{\rho \Phi \rho^{-1}} (X_g'/\Omega) \right)$$ is represented as a genus zero Heegaard splitting, hence M/Ω must be homeomorphic to S^3 . Thus the triplet $(\rho, M, M/\Omega)$ exhibits M as a 2-sheeted branched covering of S^3 . The branching set is the image under ρ of the fixed point set of Ω , that is of the set $(X_q \cap x\text{-axis}) \cup (X_q' \cap x\text{-axis})$. To understand the structure of the branching set, observe that the surface homeomorphism $\rho\Phi\rho^{-1}$ which defines the Heegaard splitting of M/Ω is a homeomorphism of $S^2 \to S^2$, and hence it is isotopic to the identity. This isotopy can be used to define a homeomorphism F of $M/\Omega \to M/\Omega$, and it can be shown that the image of the fixed point set of Ω under the product $F\rho$ is precisely the link L described in Steps 1 and 2 of the algorithm. Suppose that M is homeomorphic to S^3 . Then by a theorem of Waldhausen [7] the fixed point set of Ω must be the trivial knot, hence its image under $F\rho$ must also be trivial. Therefore a necessary condition for $M \sim S^3$ is that L have a single, unknotted component. The algorithm given in [2] and [5] enables us to test whether L is, in fact, trivial. If it is trivial, then M is the 2-fold branched covering of S^3 branched over the trivial knot. But then, $M \sim S^3$, hence the condition is also sufficient. We remark that if Waldhausen's result [7] could be extended to transformations of period p > 2, then our algorithm could be extended to the class of all 3-manifolds which admit representations as p-fold branched cyclic coverings of S^3 . It is not known whether this includes *all* closed 3-manifolds.⁴ 4. **Related results.** The Heegaard genus of a 3-manifold M is the smallest integer g such that M admits a Heegaard decomposition $X_g \cup_{\Phi} X'_g$. The bridge number b of a link L is the smallest integer n such that L can be exhibited in a b-bridge presentation [6]. The braid number n of a link L is the smallest integer n such that L can be represented as a closed braid with n-strings [1]. (This is *not* the same as a "plat".) COROLLARY 1. Every 3-manifold of Heegaard genus $g \le 2$ can be exhibited as a 2-fold branched cyclic covering of S^3 , branched over a knot or link of bridge number g+1. The two-fold branched cyclic covering of S^3 branched over a knot or link of bridge number b is a 3-manifold of Heegaard genus $\le b-1$. (This generalizes a result due to Schubert [6].) THEOREM 2. The p-fold branched cyclic covering of S^3 , branched over a knot of braid number n, is a 3-manifold of Heegaard genus $\leq (p-1)(n-1)$, for every $p \geq 2$. ## REFERENCES - 1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1926), 47-72. - 2. W. Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375. MR 25 #4519a. - 3. W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. MR 27 # 1929. - **4.** ——, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. **60** (1964), 769–778. MR **30** #1500. - 5. H. Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116-148. MR 25 #4519b. - 6. ——, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133-170. MR 18, 498. ⁴ A new result of J. Montisinos establishes that this does *not* include all closed 3-manifolds. See J. Montisinos, 3-Variétés qui ne sont pas revêtements cycliques ramifés sur S³, (to appear). 7. F. Waldhausen, Über Involutionen der 3-Sphäre, Topology 8 (1969), 81–91. MR 38 #5209. Department of Mathematics, Stevens Institute of Technology, Hoboken, New Jersey 07030 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822 Current address (Joan Birman): Department of Mathematics, Columbia University, New York, New York 10027.