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NONCOMMUTATIVE LOCALIZATION 

BY JOACHIM LAMBEK 

0. Introduction. To motivate this exposition, let us begin by looking at 
an example. If Z is the ring of integers and p is a prime number, we have 
embeddings Z -» Zp -* Zp. Here the first arrow indicates "localization 
at p"\ Zp being the local ring of quotients at p. We may take this to be the 
ring of rationals with denominators prime to p, described explicitly as a 
direct limit 

Z p = l im{Hom((H),Z)|p|n} 

where (n) = nZ is the principal ideal generated by n, n running over all 
positive integers not divisible by p. The second arrow indicates "p-adic 
completion". Zp is the completion of Zp (incidentally also of Z) in the 
p-adic topology. It is also known as the ring of p-adic integers and may 
be described explicitly as an inverse limit 

Zp = lim{Zp/(p*) | k è 0}, 

where (pk) = pkZp is the principal ideal generated by pk, k running over all 
natural numbers. 

In commutative algebra one is always told first to localize and then to 
complete. It is therefore not surprising that the combination of these two 
processes can be described in a simpler fashion than either. In fact, Zp is 
the ring of endomorphisms of the Prüfer group 

Z/(jp°°) = \im{Z/(pk)\k ^ 0}. 

The latter may also be regarded as the group of all rationals with 
denominators powers of p modulo Z. More significantly, it is the injective 
hull of Z/(p). 

We want to generalize this result in two directions. First, instead of Z 
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we wish to consider an arbitrary ring R, assumed to be associative with 
unity element. When R is commutative Noetherian, this was done by 
Matlis [M2]. Secondly, instead of localizing at a prime, we wish to discuss 
a more general process of localization. 

With the prime number p there are associated several other objects: 
(1) the prime ideal (p) = pZ, 
(2) the multiplicative set Z — (/?), 
(3) the filter of ideals {(n) \p)(n}, 
(4) the injective module Z/(/?°°). 

Localization at prime ideals and, more generally, at multiplicative sets is a 
well-known classical process for commutative rings. Localization at 
certain filters of right ideals has been considered by Bourbaki [B4] and 
Gabriel [Gl ] , while localization at injective modules was introduced by 
Findlay and the present author in a special situation in [F2], but the 
same arguments work in general [L2]. The last two methods are equiv­
alent; also equivalent is the method of torsion radicals due to Gabriel 
[Gl ] , Maranda [Ml] and Goldman [G3]. Moreover all these results can 
be expressed in the language of (hereditary) torsion theories, studied by 
Dickson [D2] and the present author [LI], [L2]. The literature abounds in 
methods of localization that are equivalent to the above, e.g. Chew [CI], 
or are special cases of the above, e.g. Silver [S3]. In at least one case, the 
localization of Cohn [C2], a comparison still escapes us. 

1. Localization at injectives. We shall describe localization at an 
injective. Let / be a given injective right K-module. A right K-module A 
is called torsion (with respect to /) if HomR(A, ƒ) = 0; A is called torsion 
free if A is isomorphic to a submodule of ƒ" for some cardinal a; and A is 
called divisible if 1(A)/A is torsion free. Here, and throughout this exposi­
tion, 1(A) denotes the injective hull of A. 

Some people are wary of injectives, because they tend to be huge and 
may be difficult to construct. They can be avoided; in fact, all information 
about the injective / is contained in any essential submodule of I, no 
matter how small. Thus, let J = I(M) be the injective hull of M, then A is 
torsion (with respect to /) if and only if 

Again, A is divisible (with respect to /) if and only if, for all right ideals D 
of JR such that R/D is torsion and for all ƒ e HomR(D, A), 

The reader will appreciate that injectives are useful for stating such 
definitions more concisely, and we shall retain them for this reason. 
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It is easily seen that every module A has a unique submodule T(A) such 
that T(A) is torsion and A/T(A) is torsion free: 

T(A) = {a e A \ HomR(aR, I) = 0}. 

T(A) is called the torsion submodule of A. Putting T(I(A)/A) = D(A)/A, 
where A c D(A) Ç 1(A), we obtain the divisible hull D(A) of A. D is not a 
functor, but its restriction to torsion free modules is. Writing Q(A) = 
D(A/T(A))9 we do obtain a functor Q, the localization functor (with respect 
to J). In fact, the inclusion {torsion free modules} -• Mod R has the left 
adjoint A h-• A/T(A) and the inclusion {torsion free divisible modules} -> 
{torsion free modules} has the left adjoint B h-> D(£), hence the inclusion 
{torsion free divisible modules} -> Mod K has the left adjoint A h-> Q{A). 

The reflector ,4 (—• Q(A) is exact. However, we prefer to regard Q as a 
functor from Mod K into Mod K. As such it is left exact, but not in general 
right exact. 

Q(A) is also called the module of quotients of A (with respect to / ) . 
Q(R) is a ring, the ring of right quotients of R. The canonical module 
homomorphism R -• g(R) is a ring homomorphism, every torsion free 
divisible R-module is a g(K)-module, and every R-homomorphism 
between torsion free divisible modules is a ö(K)-homomorphism. 

We hasten to give two illustrations in the case R = Z. When I = Q, 
the words "torsion", "torsion free" and "divisible" have their usual 
meaning. When I = Z/(p°°), they mean "^-torsion", "/7-torsion free" and 
"/7-divisible". A Z-module is here called p-torsion if every element has 
order prime to p; it is called p-divisible if every element is divisible by 
every integer prime to p. 

2. Localization at filters and multiplicative sets. With any injective / 
we shall associate the filter of right ideals 

3>l = {D ^r R | UomR(R/D, I) = 0}. 

This is an "idempotent" filter in the sense of [B4] or [Gl ] . Conversely, 
given any idempotent filter 3)y one may form the injective 

I9 = U{I(R/K)\KèrR & V ^ r " 1 ^ ^ } , 

where r~xK = { s e J R | r s e K } . One easily shows that 2)Ia = ®, but 
l2l is only "similar" to ƒ, two injectives being called similar if they give 
rise to the same localization functor Q, that is, if each is isomorphic to a 
submodule of a power of the other. 

Suppose 3) corresponds to I. Writing 

L{A) = lim{Hom^(D, A) \ D e 9} 
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and 
T\A) = {aeAla-iOe®}, 

one can show that Q{A) = L{A/T{A)) *= L{L{A)). 
When Z is a multiplicative subset of R one may introduce the idempotent 

filter 

and put /E = I3j.. The definition of ^ s simplifies to 

§ s = { D ^ r j R | D n S # 0 } 

if and only if R satisfies the right Ore condition with respect to S, that is, 

(*) v^v^a^a^m' = or'. 
Suppose h:R -+ R% is any ring homomorphism. One calls the pair 

(R2, h) a classical ring of right quotients of R with respect to £ provided 
(a) Vr6*ft(r) = 0 => \^ra = 0, 
(b) V^g^tr) is invertible, 
(c) V«6*s3reAeiflMtf) = M ^ 

As Gabriel has shown [Gl , Proposition 5, p. 415], R possesses a classical 
ring of right quotients with respect to £ if and only if (*) and 

(**) V r e R a e £ ,7 r = 0 => E U 2 m ' = 0). 

It is clear that Rz = Q(R)9 the ring of quotients with respect to J2. 
The argument in [L5, Proposition 5.5] can be used to show that 

(*) => (**) when R is right Noetherian. 
Indeed, suppose or = 0. Pick the natural number n such that the right 

annihilator of an is maximal. Now, by (*), there exists r' e R and ( / e l 
such that anr' — ra'. Therefore <jn + 1r' = ara' — 0. But the right annihi­
lator ofan+1 contains that of <rw, hence coincides with the latter by choice 
of n. Therefore ra' = crV = 0, and so (**) holds. 

In the situation described above, it is easily shown that JRZ is flat as a 
left K-module. In general, a left i^-module F is flat if and only if the right 
R-module F* = Hom z(F, Q/Z), called the "character module of F " , is 
injective. 

One may ask when the localization functor Q can be obtained from an 
injective of the form F* where F is flat. In that case a right module A will 
be torsion if and only if A ®R F = 0, and a right ideal D of R belongs to 
the associated idempotent filter if and only if DF = F. 

This situation arises, for example, when Q is obtained from an injective 
of the form 7S, where E is assumed to satisfy (*) and (**). Q might then 
also have been obtained from JR£, hence 1^ and R$ are similar. 

Another example is Q ^ id, the identity functor on Mod R. In that case 
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Q may be obtained from i7*, where F is a free left R-module. 
Schelter and Roberts [S2] have shown that every injective is similar to 

the character module of a flat module if R is commutative Noetherian or 
if the filter Q)I has countable base. On the other hand, when R is the ring of 
continuous real valued functions defined on the unit interval, they proved 
that the injective hull of the right R-module R is not similar to the character 
module of a flat module. It follows that, in this last example, the localiza­
tion functor Q cannot be obtained from a multiplicative set Z satisfying 
(*) and (**). 

3. Exactness of localization. We are interested in finding examples 
when the localization functor Q regarded as an endofunctor of Mod R is 
exact and not only left exact. It is easily seen that the following conditions 
are equivalent : 

(a) the functor Q is exact, 
(b) the class of torsion free divisible modules is closed under cokernels, 
(c) every torsion free factor module of a torsion free divisible module is 

divisible, 
(d) I{A)/A is divisible for all torsion free divisible modules A. 
Other equivalent conditions have been found by Goldman [G3], 

Hudry [H2], Djabali [Dl, Theorem 2.4], Goodearl [G4, Theorem 1.22] 
and Beachy [B3]. These conditions are clearly satisfied when R is right 
hereditary. 

It has been shown [L2, Proposition 2.4] that every divisible module 
(with respect to / ) is injective if and only if ƒ has zero singular submodule, 
that is, for every 0 =£ i e I, i~ x0 is not an essential right ideal of R. When 
this is the case, then surely 1(A)/A = 0 for every divisible module A, hence 
Q is exact by condition (d) above. 

We may also ask when Q preserves all co-limits. It is well-known that 
the following conditions are equivalent: 

(a) Q preserves all co-limits, 
(b) the class of torsion free divisible modules is closed under co-limits, 
(c) every Q(R)-module is torsion free, 
(d)Q = (-)®RQ(R), 
(e) for every right ideal D in the filter 0 , DQ(R) = Q(R). 
The last condition is due to Walkers [Wl] . Clearly, it is satisfied when 

Q(R) = Rs. Thus, when R is right Noetherian and satisfies the right Ore 
condition with respect to Z, the localization functor Q obtained from I2 

preserves all co-limits. 
We have now seen many examples in which Q is exact. An example in 

which Q is not exact has been constructed by Michler [M5]. 
There are several reasons why one wants to know that Q is exact. Our 

interest arises from §6 below, but one can also show that, when Q is exact, 
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then Q(A) ^ A ®R Q(R) for every finitely presented module A. 

4. The I-adic topology. Given an injective right R-module J, we may 
associate with it a topology on every right P-module A, the so-called 
I-adic topology. This is defined by saying that a fundamental system of 
open neighborhoods of 0 consists of all possible kernels of homomor-
phisms A -• i71, n being any natural number. One easily verifies that A 
then becomes a topological group, R a topological ring, and A a 
topological P-module. Moreover every R-homomorphism is continuous 
in the i-adic topology. 

Since J is injective, it is a trivial observation that, when A is endowed 
with the i-adic topology, the induced topology on any submodule B of 
A is also i-adic. Such a statement does not hold in general for the classical 
P-adic topology associated with a given prime ideal P of R. A fundamental 
system of open neighborhoods of 0 in the P-adic topology of A consists of 
all submodules of the form APn, where n is any natural number. 

PROPOSITION 4.1. Let R be a commutative Noetherian local ring with 
maximal ideal P, A a finitely generated right R-module, then the I-adic and 
P-adic topologies on A coincide. 

For a generalization to the noncommutative case, see §7 below. One 
deduces the classical result of Artin-Rees: 

COROLLARY 4.2. Under the above assumptions on R and A, if A is 
endowed with the P-adic topology, the induced topology on any submodule of 
A is also P-adic. 

If A is endowed with the 7-adic topology, we may make it Hausdorff by 
dividing it by the closure of 0, namely by 

0 = C){Kerf\3„eNfeHomR(A,n}. 

The I-adic completion A of A is defined as the completion of A/Ô in the 
i-adic topology. One easily sees that 

A = Urn {Im ƒ | 3neNfeHomR (A, In)}. 

The reader is warned that Â has the inverse limit topology, which is not 
in general i-adic. We note that R is a topological ring and that A is a 
topological R-module. 

The problem posed in §0 may now be stated thus : find a simple descrip­
tion of (Q(A)f. 

5. The double dual of A. Let I be a given injective right R-module, E 
its ring of endomorphisms. We may regard ƒ as a left £-right R-bimodule. 
Consider the functors 
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Mod R H o m R (- ' J ) > (E M o d r H ° m £ ( " > J ) > Mod R9 

the former being the left adjoint of the latter. We are interested in the 
composition S of these functors, thus 

S(A) = Hom£((HomR(yl, ƒ),ƒ)). 

S(A) is a kind of double dual of A. 
The adjunction rj(A):A -• S(A) is defined by rj(A)(a)(f) = /(a), for all 

ae A and ƒ e Hom R ( i , ƒ ). We note that S(R) is a ring, the bicommutator 
Hom£(7, ƒ) of ƒ, and that rj(R):R -> S(K) is a ring homomorphism. We 
write rj^Aj'.A -» Q(A) for the canonical homomorphism of §1. 

PROPOSITION 5.1. (1) Ker rj(A) = T(^), 

(2) 5(̂ 4) is torsion free and divisible, 
(3) there exists a unique homomorphism K(A):Q(A) -» 5(̂ 4) swc/z that 

K{A)ni{A) = rj(A\ 
(4) K(A) is a monomorphism, 
(5) K(R) is a ring homomorphism. 

In view of this result, we may write Q(A) Ç S(A) and regard Q(A) as a 
submodule of S(,4), Ô(K) as a subring of £(#). 

PROPOSITION 5.2. Q(,4) = ,S(^) /ƒ either of the following equivalent 
conditions holds 

(a) H o m ^ , / ) is finitely generated as a left E-module, 
(b) T(A) is open in the I-adic topology of A. 

COROLLARY 5.3. Q(R) is the bicommutator of I if either of the following 
equivalent conditions holds: 

(a) J is finitely generated as a left E-module, 
(b) T(R) is open in the I-adic topology ofR. 

Condition (a) holds, for example, when I is principal as a left £-module, 
e.g., when / = I(R), and condition (b) is easily checked when A is Artinian. 
See [M6]and[L2] . 

If we endow S(A) with the 7-adic topology, Q(A) becomes a closed 
submodule. More interesting and more natural is the finite topology on 
S(A), that is, the topology induced by the product topology of IHomRiAtI\ 
I being taken as discrete. 

With each ƒ e HomR(A, I ) one associates the projection p( ƒ ) : S(A) -> J 
such that VseS(A)P(f)(s) = s(f)- Note that this implies that p(f)rj(A) = f 
Then a fundamental system of open neighborhoods of 0 on S(A) is given by 

P(/i)_1(0) n---n p(/„)-H0) = {se S(A) \ *&) = 0 & • • • & *(ƒ„) = 0}, 

where f x , . . . , fn e HomR(A, / ) . This may be put in the more concise form 



864 JOACHIM LAMBEK [September 

Ker ƒ*, where/ = (fl9 . . . Jn)\A — F and ƒ *:S(A)-+ In is the canonical 
"extension" such that f*n(A) = f Explicitly 

f*(s) = (s(fl),...,s(fn)) = tkisPm 

where the kt:I -» In are the canonical injections and the pt:I
n -* I the 

canonical projections. 

PROPOSITION 5.4. The finite topology on S(A) induces the I-adic 
topology on Q{A). Moreover, S(A) is Hausdorff and complete in the finite 
topology. 

This result provides the motivation for studying the J-adic topology at 
least on torsion free divisible modules. It also raises the question whether 
Q(A) is dense in S(A). 

6. The density theorem. The assumption in the following theorem holds 
for each jR-module A if and only if Q is exact, hence for all the examples 
considered in §3. 

THEOREM 6.1. Assume that every torsion free factor module of Q(A) is 
divisible. Then 

(1) Q(A) is a dense submodule of S(A) in the finite topology, 
(2) S(A) endowed with the finite topology is the completion of Q(A) 

endowed with the I-adic topology, 
(3) S(A) = lim{Im g | 3neNg e HomR(Q(A), /")}. 

PROOF. (2) and (3) are easy consequences of (1). A proof of (1) was 
given in [L4] using triples. We shall here present a more elementary 
proof. 

Let s be a given element of S(A). A fundamental open neighborhood of s 
has the form {s} + K e r / * , whereƒ*:S(A) -» I" is the canonical "exten­
sion" of ƒ :A -> ln. We claim that this neighborhood meets Q(A), that is, 
that ƒ *(s) = ƒ *(q) for some q e Q{A). Thus we want to prove that 
f*S(A) e f*Q(A), that is, that f*S(A)/f*Q(A) = 0. This will follow if we 
show that it is both torsion and torsion free. 

(a) To prove that f*S{A)lf*Q(A) is a torsion module, we take any 
g :f*S{A) -• JT such that gf*Q(A) - 0 and try to show that 0 = 0. Extend 
g to h : In -> / and calculate, for any 5 e S(A), 

gf*{s) = htkiSPi(f) = s( thkiPi(f)\, 

since s is an E-homomorphism and hkte E. Moreover, since £"= i ^ » = 1, 
we obtain gf *(s) = s(hf) = s(0) = 0, because 
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hf = hrK(A)rjAA) = qf*K(A)nM) = 0. 

Therefore g = 0, as required. 
(b) To prove that f*S(A)/f*Q(A) is torsion free, we note that f*Q(A) 

is a factor module of the divisible module Q{A) and that it is torsion free, 
because it is a submodule of I". By assumption, ƒ * Q(A) is divisible. But 
f*S(A) ç In is torsion free, and every factor module of a torsion free 
module by a divisible module is torsion free [L2, Proposition 0.6], hence 
f*S(A)/f*Q(A) is torsion free, as was to be shown. 

COROLLARY 6.2. Assume that every torsion free factor module of 
Q(R) is divisible. Then the I-adic completion of Q(R) is the bicommutator of 
L If R is commutative, it is the center of E. 

REMARK 6.3. Matlis [M2] obtained this result when R is commutative 
Noetherian and I = I(R/P), P being a prime ideal. In that case he even 
showed that E is commutative. 

We give three examples when R = Z. 
EXAMPLE 6.4. I = Z/(p°°), p prime, g(K) = Zp, the 7-adic topology on 

Q(R) is the p-adic topology, and (Q{R)y = Zp is the ring of p-adic integers. 
EXAMPLE 6.5. I = Q, Q(R) = Q, the I-adic topology on Q(R) is 

discrete, and (Q{R)y = Q 
EXAMPLE 6.6. J = Q/Z, Q{R) = Z, the J-adic topology on Q{R) has 

as open sets all arithmetic progressions, and (ÔW)" = Yl rime ^P-

7. Localization at a semiprime ideal. We now return to the question 
how to localize at a prime ideal or, more generally, at a semiprime ideal 
N of R. On the one hand, one may consider the injective module I(R/N), 
on the other hand, one may try to make use of the multiplicative set 

V(N) = {reR\Vs4NrstN} 

proposed by Goldie. When R is commutative and N is prime, <&(N) is the 
complement of N. When R is noncommutative and right Noetherian, 
<ë(N) consists of those elements of R which are regular modulo N. 

The results of this section were obtained jointly with Gerhard Michler. 

PROPOSITION 7.1. Let N be a semiprime ideal in the right Noetherian 
ring R. Then one obtains the same localization functor QN from the injective 
module I(R/N) as from the multiplicative set ^(N). 

REMARK 7.2. When N = P is a prime ideal, let A be maximal among 
right ideals of# not meeting ^(P). Then IP = I(R/A) is an indecomposable 
injective, it is determined by P uniquely up to isomorphism, and 
I(R/P) = /p, where n is the right Goldie dimension of the right Noetherian 
ring R/N. 
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In the following we shall write RN = QN(R) and JV for the "closure" of 
JV in RN with respect to I(R/N), that is, 

JV = {q e RN | Hom^R/q-'hiR), I(R/N)) = 0}. 

THEOREM 7.3. Let N be a semiprime ideal in the right Noetherian ring 
R. Then the following statements are equivalent: 

(1) R satisfies the right Ore condition with respect to #(JV), 
(2) JV is the Jacobson radical of RN and RN/N is a semisimple Artinian 

ring, 
(3) JV is a two-sided ideal of RN and QN is exact, 
(4) for all c e ^(N), N/cN is torsion with respect to I(R/N). 

REMARK 7.4. In view of (4), the right Ore condition may be checked by 
looking only at elements of JV. Actually, a much smaller ideal may do. 
Suppose K is an ideal of R contained in JV such that #(JV) £ ^(K) and 
Nn c K for some natural number n. Then the above statements are also 
equivalent to the following: 

(5) for all c e «'(JV), K/cK is torsion with respect to I(R/N). 
In particular, taking JV to be the prime radical of JR, we can deduce 

Small's famous theorem which asserts that R has a classical Artinian ring 
of right quotients provided all elements of #(JV) are regular. 

LEMMA 7.5. Let Rbe a right Noetherian ring, N an ideal such that R/N 
is semisimple Artinian. Then the following statements are equivalent: 

(1) for each right ideal A of R, \eNA n Nn ^ AN; 
(2) for each element i e I(R/N), 3neNiNn = 0; 
(3) on every finitely generated right R-module, the N-adic topology 

coincides with the I(R/N)-adic topology. 
Moreover, these statements hold together with the assertion that JV is the 

Jacobson radical of R if and only if 
(4) every right ideal of R is closed in the N-adic topology. 

When (R, JV) satisfies (4) or the equivalent statements of Lemma 7.5, 
we call it a classical right semilocal ring. 

Associated with a semiprime ideal JV of a right Noetherian ring R there 
are two closure operations: p for right ideals and X for left ideals. For any 
right ideal A and any left ideal B of JR we put 

pA = {r e R | Uom^R/r-'A, I(R/N)) = 0}, 

IB = smallest left ideal B' such that B ^ B' and ^(JV) Ç <#(B'). 

When A is an ideal, then so are pA and À A, and XpXA = pXA. 

THEOREM 7.6. Let JV be a semiprime ideal in the right Noetherian ring R. 
Then the following statements are equivalent: 

(1) for each right ideal A of R, 3neNA n ÀNn c p(AN); 
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(2) for each i e I(R/N), 3neNrtNn = 0; 
(3) N is an ideal and (RN, N) is a classical right semilocal ring. 
Moreover, these equivalent statements imply that R satisfies the right Ore 

condition with respect to ^(N). 

Statement (1) asserts that N has the symbolic right Artin-Rees property. 
REMARK 7.7. Let N = P be a prime ideal in the right Noetherian 

ring R. Then Michler has shown that the equivalent conditions of 
Theorem 7.6 imply the following: 

(4) RN is an n by n matrix ring over a complete local ring D with finitely 
generated Jacobson radical. 

The equivalent statements of Theorem 7.6 are satisfied with N = P in 
the following examples. 

EXAMPLE 7.8 (MATLIS). R commutative Noetherian, P a prime ideal. 
EXAMPLE 7.9. R right and left Noetherian hereditary prime, P a prime 

ideal such that P2 # P. In particular (Kuzmanovich) R Noetherian 
Dedekind prime, P any nonzero prime ideal. In this example D is a 
complete rank one valuation ring. 

EXAMPLE 7.10 (MCCONNELL). R the enveloping algebra of a finitely 
generated nilpotent Lie algebra, P any nonzero prime ideal. 

EXAMPLE 7.11 (MICHLER). R = AG the group ring of a finite group G 
with coefficient ring A, A being right Noetherian prime of characteristic 
zero, P the augmentation ideal. 

8. Categorical treatment of localization. In view of the above examples, 
one has the feeling that the process of localization at a prime ideal P 
described here is useful when R satisfies the right Ore condition with 
respect to ^(P), but there is no evidence that this is so when the Ore 
condition fails. Perhaps one should work in another category than Mod JR, 
for instance, the category of JR-R-bimodules. Before returning to this 
question, we shall present a categorical treatment of localization that 
applies to all complete categories, not just to Mod R. 

The work described in this section and in §9 was done jointly with 
Basil Rattray. 

From now on se will be any complete category, that is, a category 
equipped with products and equalizers. Let ƒ be a given object of se. 
We shall consider the limit closure L(I) of / , that is, the smallest full 
subcategory of se which contains I and is closed under all limits, that is, 
under products and equalizers. 

The category L(I) is complete and has a co-generator, namely / , and 
the inclusion into se preserves limits. One might therefore construct 
a left adjoint to the inclusion functor by means of Freyd's special adjoint 
functor theorem, provided one knew that the class of subobjects of any 
object was a set. We shall use a different method for constructing this 
adjoint, following an idea of Fakir [F l ] . 
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We write (A, B) for the set of all morphisms A -> B in sé, Ens for the 
category of sets, and consider the two functors 

sé (~,I] > Ensop - ^ - > sé. 

Clearly the former is left adjoint to the latter with adjunction 
77: id -> S = 7 (~'J), where p(f)rj(A) = f p(f):S(A) -• I being the canoni­
cal projection corresponding to ƒ e (A, I). 

Since rj is a natural transformation, (̂̂ 4) equalizes the two morphisms 
Srj{A), nS(A):S(A)=$S2(A). Let /c(^):6(^) - S{A) be their equalizer, 
then there exists a unique morphism rj^Aï'.A -> g(^4) such that 
KiAfy^A) = ?/(̂ 4). Fakir observes that (ô> *h) gives rise to an idempotent 
triple if and only if S(K(A)) is a monomorphism for all A. 

The following lemma is useful in proving results about Q. 

LEMMA 8.1. K(A) is the joint equalizer of all pairs of maps S(A) zzt / 
which are equalized by rj(A):A -> S(A). 

We shall call I injective if (—, ƒ ) preserves all regular monomorphisms, 
that is, monos which happen to be equalizers. This notion seems more 
useful than the corresponding one for arbitrary monomorphisms. We 
shall call / K-injective if (K(A), I) is a mono in Ensop, that is, a surjection in 
Ens, for all objects A of s4. This amounts to requiring that every 
morphism f:Q(A) -> ƒ can be extended to some f':S(A) -> I such that 
f'K(A) = ƒ. 

We write Fix Q for the full subcategory of sé consisting of all objects A 
for which rj^A) is an isomorphism. We note that I belongs to Fix Q. 

THEOREM 8.2. The following statements are equivalent: 
(1) I is K-injective; 
(2) (Ô, f/i) determines an idempotent triple; 
(3) Fix Q is a reflective subcategory of sé, the reflector being induced by 

6; 
(4) Fix Q is the limit closure of I. 

We point out that, according to Fakir, (Q,rjl,fj,1) is the "best co-
approximation" of the triple (S, n, p) by an idempotent triple. (The reader 
will be able to supply p and px.) 

For some purposes, it is more convenient to look at the dual category 
Jf = s/op, which is thus assumed to be co-complete. With any object P 
of M we associate a functor S:& -> M, which is defined on objects as a 
co-product of copies of P: S(B) = Yjfe(p,B)P- $ comes equipped with a 
natural transformation e:S -> id, and we let K:S -+ Q be the co-equalizer 
of eS, Sz:S2 ^tS. Theorem 8.2 now takes the dual form: 
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THEOREM 8.2.* The following statements are equivalent: 
(1) P is K-projective; 
(2) (Qi, Fn) determines an idempotent co-triple; 
(3) Fix Q is a co-reflective subcategory of ^ , the co-reflector being 

induced by Q ; 
(4) Fix Q is the co-limit closure of P. 

We can interpret the "co-localization" functor Q associated with a 
projective P in terms of the Eilenberg-Moore category of a triple. The 
forgetful functor U = (P, — ): $ -• Ens has a left adjoint F with adjunc­
tion rj:id -• UF, and the triple (UF,rj, UsF) on Ens gives rise to the 
Eilenberg-Moore category Ens t /F. Let K:8ê -> Ens1777 be the so-called 
comparison functor and M its left adjoint, then MK — Q. 

This observation allows one to formulate Linton's condition for 
(^, U) to be equational (triplable over Ens), that is, for K to be canoni-
cally isomorphic to the identity, in terms of properties of P. While such a 
formulation may not be new, in the present context it immediately leads 
to applications that appear not to have been noticed before. For example, 
if se is any Grothendieck category or if se is the category of all set-valued 
sheaves on a small category equipped with a Grothendieck topology, then 
sé°v is equational. 

9. Localization in various categories. The reader will not be surprised 
to learn of the following illustration of Theorem 8.2. 

EXAMPLE 9.1. s4 = Mod R, I any injective module, L(I) the class of 
torsion free divisible modules, Q the localization functor constructed in §1. 

The next example is suggested by Delale [ D l ] , who used an idea by M. 
Artin. 

EXAMPLE 9.2. Let se be the full co-reflective subcategory of the 
category of all left P-right-P-bimodules which are generated by their 
centers. Thus A is in se if and only if every element a e A has the form 
a = X"=i airi w n e r e atr = rat f° r an" ^e JR. Delale has shown that all 
injectives in sé are obtained from injective P-P-bimodules I by restricting 
to C(I), the part generated by the center of/. Suppose we have computed 
the functor S corresponding to J in the category of R-P-bimodules, then 
the functor Sc corresponding to C(I) in sé is given by A h-• CS(A). The 
associated idempotent functor Qc has the property that QC(R) is a ring in 
many cases. 

Another method for obtaining two-sided rings of quotients has been 
discussed by Schelter [SI] . 

EXAMPLE 9.3. Let sé = (Mod R)op, P a finitely generated projective 
right P-module. One computes Q(A) = HomK(P, A) ®E P, where E = 
EndK(P) is the ring of endomorphisms of P. 
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EXAMPLE 9.4. Let sé — Ens^op be the category of presheaves on a 
small category 9C > which may be equipped with a Grothendieck topology 
j . One can construct a huge injective I depending on j such that the 
associated localization functor Q assigns to each presheaf A the corre­
sponding sheaf Q{A). L(I) is of course the category of sheaves. 

One can do an analogous thing in any elementary topos sé in the sense 
of Lawvere and Tierney [L9]. Since sé need not be complete, the above 
construction of S does not work, instead we put S(A) = I{IA). For ƒ we 
choose the retract of the subobject classifier Q determined by the Heyting 
endomorphism j of Q (Grothendieck topology). Not surprisingly, it turns 
out that Q(A) will again be the sheaf associated with A. However, it 
happens that Fix Q is not the limit closure of 7, it must also be closed under 
internal powers. 

EXAMPLE 9.5. Let s4 be the category of uniform spaces, I the closed 
interval [0, 1]. Then I is injective and Q(A) is the Samuel compactification 
of ,4. 

EXAMPLE 9.6. Let sé be the category of topological spaces, I again the 
closed unit interval. Then I is not injective but K-injective, by Tietze's 
theorem, and Q(A) = fi(A) is the Stone-Cech compactification of A. 
This is essentially the way Cech originally constructed it, except that he 
defined Q(A) as a closure, not as an equalizer. 

EXAMPLE 9.7. Let sé be the category of partially ordered sets and inf 
preserving mappings. Then Ballinger [Bl] has shown that the partially 
ordered set 2 is not injective but K>injective, and that Fix Q consists of all 
complete partially ordered sets. He has also investigated other categories 
of partially ordered sets, semilattices and lattices. 
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