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1. Introduction. In this note, I shall briefly present a geometric notion, 
which I believe is new, and which may have interesting applications to 
physics (e.g. in the nonrelativistic limit of cosmological models) and to 
mathematics (e.g. the study of the boundary properties of the Bergmann 
metric on domains in complex Euclidean space). More details will appear 
in a forthcoming book [6]. 

What I shall do is to reformulate the notion of "geodesic" for a non-
singular Riemannian metric so that it makes sense in the singular case. 
This will require that the reader be familiar with the notion of the 
"Hamilton-Jacobi equation" associated with a variational problem. My 
book [1] can be used as a reference for this material and for the notations 
used in this note. 

2. Geodesies of nonsingular Riemannian metrics. Let M be a C00 mani
fold. V(M) denotes its C00 vector fields, F(M) its C00, real-valued functions, 
and F1(M) its differential forms of degree one. 

A Riemannian metric is usually defined as an F(M)-bilinear symmetric 
map j8: V(M) x V(M) -> F{M) which is nondegenerate. Such a /? defines 
an F(M)-linear isomorphism a :FX(M) -• V(M) with the following property: 

(2.1) OL~\X)(Y) = ${X, Y) for X, Ye V(M). 

Let j8d be the form: F\M) x F\M) -> F(M) defined as follows: 

(2.2) nO1,e2) = p(oi(01\oi(e2)) for 61,62eF1(M). 

DEFINITION. A function f e F(M) is a Hamilton-Jacobi function of the 
metric if there is a function h( ) of one variable such that: 

(2.3) pd(dfdf) = h(f). 

Let grad :F(M) -> V(M) be the first order linear differential operator 
defined as follows: 
(2.4) grad/=a(d/). 

THEOREM 2.1. A curve in M is a geodesic of the nonsingular metric /? if 
and only if there exists, locally, a Hamilton-Jacobi function f such that the 
curve is an integral curve of grad/. 

The proof of Theorem 2.1 is given in [1], and is a consequence of classical 
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Hamilton-Jacobi theory. This reformulation suggests the generalization 
of the "geodesic" notion to the singular case. 

3. Geodesies of singular metrics. 
DEFINITION. A singular Riemannian metric is defined by an F(M)-

bilinear, symmetric map y:Fi(M) x FX(M) -» F(M) which is degenerate, 
in the sense that there exists a point peM, and a form 6 e F1(M) such that: 

(3.1) 0{p) * 0, 

(3.2) y(0,F1(M))(p) = 0. 

Let y be such a singular metric. Let a be the F(M)-linear map 
F^M) -> V(M) such that 

(3.3) ö1(a(0)) = y(01,ö) for e,61eF\M). 

Let us say that a function ƒ e F(M) is a Hamilton-Jacobi function if there is 
a function h( ) of one variable such that: 

(3.4) y(df,df) = h(f). 

Let us also say that a curve a is a geodesic of y if the following conditions 
are satisfied. 

(a)(7isC°°, 
(b) a can be broken up into small pieces, in each of which it is an integral 

curve of a vector field of the form u(df ), where ƒ is a Hamilton-Jacobi 
function. 

DEFINITION. Let p be a point of M. The metric component of p is the set of 
all points q e M which can be joined to p by a continuous, piecewise C00 

geodesic. 
EXAMPLES. (A) y is identically zero. Then, every function is Hamilton-

Jacobi, (x(df) = 0. The geodesies are points, and the metric components 
are also points. 

(B) M = K3, with coordinates (x, y9 z). y is of the following form: 

y(dx, dx) = 0 = y(dx, dy) = y(dx, dz) = y(dy9 dz\ 

y(dy, dy) = 1 = y(dz, dz). 

Then, ƒ (x, y, z) is Hamilton-Jacobi if and only if 

IS'•13'-™ <*>-&•&• 
We see that the geodesies are curves t -* (x(t), y(t), z(t)) such that 
x(t) = constant, t -> (j/(t), z(0) i s a straight line of R2. The metric com
ponent then forms a foliation of M, each diffeomorphic to R2, with a 
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nonsingular metric on each of the leaves. 

4. Geodesies of singular metrics and foliations with singularities. Let y 
be a singular metric on M. Let H denote the set of 6 e F1 {M) such that 
y(8, Fi(M)) = 0. Then, H defines a Pfaffian system on M. Let F denote the 
set of vector fields XeV(M) such that 6(X) = 0, for all 6eH. Then, V 
defines a vector field system on M. We have a(F1(M)) <= V. Thus, the 
geodesies are also integral curves of V. In determining the metric com
ponents, the results and idea from the theory of foliations-with-singulari-
ties [3], [4], [5] are obviously relevant. A recent definitive result in this 
theory by H. Sussmann [8] enables one to prove the following result, 
which was also pointed out to me by Sussmann: 

THEOREM 4.1. The metric components are submanifolds ofM. 

5. Applications to the theory of second order differential operators. Let 
N be a manifold, A:F{N) -> F(N) a C00 second order differential operator 
on N. Let O be an open subset of AT, and let M be a submanifold of N 
that lies on the boundary of 0. Suppose that A is tangent to M. 

Often one encounters situations where the A is nonsingular on 0, but 
"degenerates" on M. The symbol of A will be an F(M)-bilinear, symmetric 
map: F\N) x F\N) -> F(N). It will restrict to 0 and M, hence will define 
a singular metric on M. The geodesies of this metric will play a key geo
metric role in the study of the analytic properties of A near the boundary. 
(See [2] for earlier work in this spirit.) For example, N might be Cn, 0 
a bounded domain, A = Laplace-Beltrami-operator of the Bergmann 
metric on 0. In several examples (e.g. n = 2, 0 = bidisk), the metric 
components, as defined above, coincide with the "boundary components", 
as defined by 1.1. Piatetskii-Shapiro [7]. One may conjecture that this is 
true in some generality. 
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