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Introduction. In this note we indicate the development and state the 
properties of a degree theory for a rather general class of multivalued 
mappings, the so-called ultimately compact vector fields, and then use 
this degree to obtain fixed point theorems. As will be seen, these results 
unite and extend the degree theory for single-valued ultimately compact 
vector fields in [13] and the degree theory for multivalued compact vector 
fields in ([5], [8]) and also serve to extend to multivalued mappings the 
fixed point theorems for single-valued mappings obtained in [1], [2], [3], 
[9], [10], [13], and others (see [13]) and to more general multivalued 
mappings the fixed point theorems in [4], [6], [8]. The detailed proofs 
of the results presented in this note will be published elsewhere. 

1. Let X be a metrizable locally convex topological vector space. If 
D c l w e denote by K(D) and CK(D) the family of closed convex, and the 
family of compact convex subsets of D, respectively. We also use D (or cl D), 
ÔD, and clco D to denote the closure, boundary and convex closure of D, 
respectively. To define what we mean when we say that the upper semicon-
tinuous (u.s.c.) mapping T:D -• K(X) is ultimately compact, we employ a 
construction of a certain transfinite sequence {Ka} utilized by Sadovsky 
[13] in his development of the index theory for ultimately compact single-
valued vector fields. Let K0 = clco T(D), where T(A) = [jxeA T(x) for 
A a D. Let tj be an ordinal such that Kp is defined for ƒ? < rj. If rj is of the 
first kind we let Kn = clco T(D n X r l ) , and if rj is of the second kind we 
let Kn = f]fi Kp. Then <Xa> is well defined and such that Kx a Kp if 
a > j8. Consequently, there exists an ordinal y such that Kp = Ky if 
P ^ y. We define K = K{T, D) = Ky and observe that clco T(K n D) = K. 
The mapping T is called ultimately compact if either K n D = 0 or if 
T(K n D) is relatively compact. 

DEFINITION 1. Let D c X be open with T:D -> K(X) ultimately compact 
and such that x $ T(x) if je e dD. If K(T, D) n D = 0 we define deg(J -
T, D, 0) = 0, and if K(T, D) n D # 0 we let p be a retraction of X onto 
X(T,D) and define 
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(1) deg(7 - T, D, 0) = degc(7 - Tp, p " \D\ 0), 

where the right-hand side of (1) means the topological degree defined in [8] 
for multivalued compact vector fields. 

Note that the right-hand side of (1) is well defined since xeD and x e T(x) 
if and only if x e cl(p~ X(D)) and x e T(p(x)), and one may show that this 
definition is independent of the particular retraction chosen. The com
bination of retractions and Leray-Schauder degree has been previously 
used by F. E. Browder in defining a fixed-point index, and by R. D. Nuss-
baum in defining the degree for single-valued fc-set-contractions with 
k < 1. We add that if T is compact (i.e., T:D -> K(X) is u.s.c. and T(D) 
is relatively compact), then deg(7 - T, D, 0) = degc(7 - T, D, 0). Further
more, this degree has the following properties. 

THEOREM 1. IfX, D, and Tare as in Definition 1, then the degree given by 
(I) is such that 

(a) if deg(7 — T, D, 0) ± 0, then T has a fixed point in D ; 
(b) if H :D x [0,1] -• K{X) is u.s.c, H(D n K' x [0,1]) is relatively 

compact where K' = K(H, D x [0,1]), and x $ Ht(x) for xedD and 
t e [0,1], then deg(7 - H0 , A 0) = deg(7 - Hl9 D, 0); 

(c) ifD = D1vD2, where Dx and D2 are open and D1nD2 = 0 , and 
x $ T(x) for xedD1u dD2, then deg(7 - T, D, 0) = deg(7 - T, Dl9 0) 
+ d e g ( 7 - T,D2,0); 

(d) if D is a symmetric neighborhood of the origin and T:D -• K(X) is 
an odd ultimately compact map with x $ T(x)for x e 3D, then deg(J — T, D, 0) 
is odd. 

We add that even in the case of compact multivalued maps the assertion 
(d) is new for, unlike [5], [8], we do not require D to be convex. 

2. To indicate the usefulness of the topological degree given by Defi
nition 1 we state some examples of ultimately compact maps and some con
ditions under which the degree is nonzero, a condition which guarantees 
the existence of fixed points. 

If {pja e A} is a family of seminorms which determines the topology 
on X, as A and Q c X, then we define ya(Q) = inf{d > 0|Q can be 
covered by a finite number of sets of pa-diameter less than d) and #a(Q) 
= {r > 0|Q can be covered by a finite number of pa-balls of radius less 
than r}. Letting C = {f'.A -> [0, GO]}, with C ordered pointwise, we 
define y : 2X -> C and x ' 2* -> C by y(Q)(a) = yjfl) and x(Q)(a) = %a(Q) for 
each oce A and Q c l Then y and x a r e measures of noncompactness 
which possess the usual properties (see [14] for x) and we let O denote 
either % or y. A u.s.c. map T: D -» CX(X) is called ^-condensing if <D(T(,4)) 
^ O (v4) when A a D and O(^l) ^ 0 and, if fc e R, T is called a fc-O-con-
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traction if T(D) is bounded and ®(T(A)) ^ k®(A) when A a D. Recall 
that when X is a Banach space, then T:D -» CX(X) is called contractive 
(nonexpansive) if there exist a 6 (0, l)(a = 1) such that 

(1) d*(T(x\ T(y)) ^ arf(x, y) for x, y e D, 

where d* is the Hausdorff metric on CK(X) derived from d = || ||. Finally, 
following [7], we say that a u.s.c. map T:D -> K(X) is generalized con
densing if for each Q <= D such that T(Q) a Q and Q\clco T(Q) is relatively 
compact, the set Q is compact. 

It is clear that every generalized condensing map T:D -» D is ultimately 
compact if D is closed and convex. Further, if X is also complete (i.e., a 
Fréchet space), then every k — (^-contraction T:D -> CK(X) with 0 
< k < 1 is (^-condensing, and every ^-condensing map is ultimately 
compact. 

THEOREM 2. Let D cz X be convex and open and let T:D -» iC(D) be 
ultimately compact with K(T, D) =fc 0 and x $ T(x) for x e dD. Then 
deg(J — T, D, 0) = 1, and so T has a fixed point. 

It is not hard to show that if T in Theorem 2 is generalized condensing 
(and, in particular, if T is 0-condensing and X also complete), then 
K(T9 25) ^ 0 and so Theorem 2 is valid for these classes of maps without 
the explicit assumption that K(T, D) # 0 . 

THEOREM 3. Let X be a Fréchet space, D a neighborhood of 0, and 
T: D -» CX(X) a (^-condensing map such that 

(2) {Ax} n T(x) = 0 forxedD and X ^ 1. 

TTien T /ias a yîxed point. 

Using Theorem 3 one proves the following general fixed point theorem 
for 1 — (^-contractions. 

THEOREM 4. Let X and D be as in Theorem 3 and let T:D -+ K(X) be a 
1 — (^-contraction. Suppose further that if there is a sequence {xn} c D with 
corresponding yn e T(xn)for each n such that xn — yn -• 0 as n -* oo, then 
there exists xeD with x e T(x). If T satisfies (2), then Thas a fixed point in D. 

For X a Hausdorff l.c.t.v.s. and T single-valued, Theorem 2 was proved 
by Sadovsky [13]. For X a Banach space and T single-valued and y-
condensing, Theorem 3 was deduced in [10] from the index theory for 
y-condensing maps developed in [9] ; for multivalued /-condensing maps, 
Theorem 3 includes the result of [6], while for multivalued compact maps 
with D = B(0, r), Theorem 3 was proved in [4] for X a Banach space and 
in [8] for D a neighborhood of 0 in a Hausdorff l.c.t.v.s. In case X is Banach 
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and T single-valued, Theorem 4 reduces to Theorem 1 in Petryshyn [11]. 
Our next result extends to condensing maps T:D -» K(X) and to sym

metric but not necessarily convex sets D the validity of the antipodes 
theorem established in [4], [8] for compact multivalued maps and in [13] 
for single-valued condensing maps. 

THEOREM 5. Let X be a Fréchet space, D a symmetric neighborhood of 
0 e X, and T:D -> CK(X) ^-condensing. Assume also that 

(3) {x - T(x)} nk{-pc- T(-x)} = 0 forxeôD and Xe [0,1]. 

Then deg(7 — T, D, 0) is an odd integer. 

Since a contraction T:X -* CK(X) is a-ball-contractive, 0 < a < 1, on 
each bounded set in X, an immediate consequence of Theorems 3 and 5 
is the following corollary. 

COROLLARY 1. Let X be a Banach space, D a bounded neighborhood of 
0eX,S:X_-> CK(X) contractive, and C:D -+ CK{X) compact. If T 
= S + C.D -> CK(X) satisfies either (2) or (3) on dD, then T has a fixed 
point in T. 

If in Corollary 1 the map S is defined only on D, then the conclusion still 
holds provided that either S is single-valued, or the constant a in (1) is <\, 
or X is a Hubert space and D = B(0, r). 

We add in passing that if the Banach space is assumed to have the so-
called Opial property, D is weakly compact, and C:D -• CK(X) is com
pletely continuous, then Corollary 1 also holds for S:X -+ CK(X) 
nonexpansive. 

We end our note with the following mapping theorem which extends 
the corresponding result of Ma [8] for multivalued compact maps. 

THEOREM 6. Let Xbea Fréchet space, D c Xan open set, and T.D-+ K(X) 
k — ^-contractive with k < l.IfTisa boundary map in the sense of Ma [8], 
then {I - T)(D)is open. 
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