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1. Introduction. By computing the joint spectrum [5], [6] for certain
systems of elements in a tensor product [3], [11] of Banach algebras, and
applying the spectral mapping theorem in several variables [5], [6], [7], we
find that we can determine the spectrum of certain linear operators,
notably the tensor product S ® T discussed by Brown and Pearcy [1],
[12]. We can also see that the spectrum of an “operator matrix’’ [4], [10]
is what it ought to be, and recover the results of Lumer and Rosenblum
[10] about the multiplication operators LgR; and Lg + Ry. Full proofs,
and more detail, will appear elsewhere [8].

2. Left and right spectra. Suppose that 4 is a complex Banach algebra,
with identity 1. Then the joint spectrum of a system of elements a € A" is
the union of the left spectrum and the right spectrum [5, Definition 1.1]:

21 ali™a) = a§"(a) L o (a)

where

(22 o's(a) = {s eC":1¢ _i Aa; — sj)}

and a

(23) o'iEa) = {se Cr:l¢ il (a; — sj)A} .
i=

The spectral mapping theorem [5, Theorem 3.2] is the equality
24) aii™f(a) = fol™(a),

valid for a commuting system of elements ae A" and a system
f =1 f2---,fm) of polynomials in n complex variables. Equality (2.4)
is also valid for left and right spectra separately ; it extends [7, Theorem 4.2]
to certain noncommuting systems of elements, where of course the idea
of a “polynomial” has to be extended. Here we take a “‘polynomial in n
variables” to be an element of the free complex algebra-with-identity
Poly, on n generators z; ; for an arbitrary system of elements a € 4", the
mapping f — f(a):Poly, > A is a homomorphism which preserves
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identity and sends each z; into the corresponding a;, and then a system
f=(f1, f2,.-., fm) € Poly? defines a mapping f: A" — A™.

It will be convenient, for what follows, if we summarize the spectral
mapping theorems for a composite system of elements (a,b)e A"*™
associated with two systems a € A" and b e A™. It is also convenient here
to work explicitly with the left spectrum (2.2): The arguments for the right
spectrum are obviously exactly similar, and can be obtained formally by
“reversing products” in the algebra A4 ; then we obtain usually the corre-
sponding statement for the joint spectrum by taking unions.

As a convenient abbreviation, write [7, Definition 1.1]

(2.5 ol (b) = {te a"'(b):(s, t) € 6""(a, b)},
for arbitrary systems of elements a € A", b e A™ and scalars s e C". Also
(26) left U {O.Iefts(b ‘se O.left(a)}

LEMMA 1 [7, Theorem 2.3]. Ifae A", be A™, se C" and fe Polyt, ., and
if each a; commutes with each by, then there is equality

2.7 oltt f(a, b) = o £ (s, b).

THEOREM 1 [5, Theorems 3.2,4.2,43]. Ifae A", be A™ and f € Poly?, ,.,
then with no restriction there is inclusion

(2.8) fo'™(a, b) < ¢'*''f(a, b).
If a e A" is commutative and commutes with b € A™ then there is equality
(2.9 c'*"f(a,b) = o', f(a, b).
If the whole system (a, b) € A"*™ is commutative then there is equality
(2.10) a"*f (a, b) = fo'*(a, b).

These results are valid [7, Theorems 4.2, 4.3] if we replace each com-
mutivity condition by the corresponding “quasi-commutivity” require-
ment [7, Definition 3.1].

3. Tensor products. If 4 and B are complex Banach algebras then we
shall denote by A ® B the completion of the algebraic “tensor product™
A ®¢ B with respect to some uniform crossnorm [3], [11] which is com-
patible with the multiplication (¢ ® b)(@’ ® b') = (aa’) @ (bb). Thus
elements of the form ) X, a, ® b, form a dense subspace, elements of
theforma,; ® b, have norm ||a,| ||b,||, and for every pair of bounded linear
functionals ¢ € A* and y € B*, the linear functional

R R
(3.1) P@Y: Y a,®b,— Y @b,
r=1 r=1
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is bounded, and extends to the product A ® B.
THEOREM 2. If a€ A" and b e B™ are arbitrary then the system
@®1,1®b)=0@;®1,a,®1,...,0,8 1,1 ®by,..., 1 ®D,)
has left spectrum given by the product

(3.2 i@ ® 1,1 ® b) = d5(a) x cT(b).

Similarly for the right spectrum; for single elementsa = a,€ Aand b = b, € B
there is inclusion

(3.3) 0 (a4(@) x ap(b) = o%gha ® 1,1 ® b) = au(a) x ag(b).

Proor. The left-hand side of (3.2) is obviously included in the right; if,
conversely, se C" is in ¢'§'(a) and t € C™ in o’s'(b), then the systems a — s
and b — t generate proper closed left ideals M and N in 4 and B. By the
Hahn-Banach theorem there exist bounded linear functionals ¢ e A*
and € B* for which ¢(1) = y(1) = 1, while (M) = Y(N) = {0}. Now
the functional ¢ ® ¥ of (3.1) annihilates the left ideal generated by the
system (@ — s) ® 1,1 ® (b — t)) in the algebra A ® B, but not the identity
1 ® 1. This puts (s, f) € C"*™in the left spectrum of the system (a ® 1,1 ® b).

For the inclusion (3.3) we use the fact [5, Lemma 4.1] that the topological
boundary of the spectrum of a single element in a Banach algebra lies in
the intersection of its left and right spectra.

4. Spectral mapping theorems. The combination of (3.2) from Theorem 2
with (2.10) from Theorem 1 gives at once

THEOREM 3. If ae A" and b € B™ are commuting systems of elements, and
fePoly? ., then there is an equality

(4.1) diesf(@a® 1,1 ® b) = f(d§"(a) x a5"(b)).

Similarly for right spectra; for single elements a = a, € A and b = b, € B,
and one polynomial in two variables f = f, € Poly,, there is equality

“.2) 0408f/(@® 1,1 ®b) = f(o4(a) x ap(b)).

Proor. For the second part apply (3.3), together with a simple observa-
tion about polynomials in two complex variables:

(4.3) f(@(a4(a) x o)) = f(o4(a) x ap(b)).

One way to see this is to count the zeroes of the polynomial f(-, w) — rin
the interior of the compact set o 4(a), for each complex number r and each
point w of gg(b); compare Lemma 2.2 of [12].

The Brown-Pearcy result [1] is the case f(a® 1,1 ® b) = a ® b, with
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A = B =%(E, E) for a Hilbert space E. Our arguments readily extend to
Schechter’s generalization [12], which covers the product of n copies of
A = Z(E, E) for a Banach space E, and rational functions f with no
singularities on the joint spectrum. Note carefully the difference between
the “‘joint spectrum” of Schechter’s paper [12] and ours in (2.1).

If only one of the systems a€ A" and b e B" is commutative we still,
using (2.7) and (2.9) instead of (2.10), obtain a result sufficient to determine
the spectrum of an “operator matrix’’:

THEOREM 4. If a € A" is a commuting system, if b e B™ is arbitrary, and if
JePolyk, . is a system of polynomials, then there is equality

(4.4) oienf(@® 1,1 ®b) = {J{o5"f (s, b):s€ 0§ (a)}.

Proor. The right-hand side of (4.4) is included in the left because, if
seC" is in dM(a) and re C? in o%'f(s,b), then by (3.2), the system
(5,7)eC"*?isin o%lz(a ® 1,1 ® f (s, b)), and by (2.7), also in 6§ z(a ® 1,
f(@a® 1,1 ® b)). Conversely if r is in the left-hand side of (4.4) we apply
(2.9) to find se C" for which (s,7) is in R a® 1, f(a® 1,1 ® b)), and
use (2.7) again.

For the application to ‘“operator matrices” take B = C,, to be the
algebra of ¢ x q complex matrices, so that the tensor product 4 ® B is
‘g x g matrices with entries in A”: All the uniform crossnorms give the
same Cartesian product topology. If we take b = (b4, by5, . . ., ba) € B
to be the usual basis for the vector space B then an arbitrary matrix can
be written

q

4.5) f@®1L,1®b) = Z aj, ® by ;

Jk=1
we claim that, for a commuting system of entries a = (a,y, d;5, ..., dqq),
(46) 0,408f(a®1,1®b)={reC:0e0 det(f(a® 1,1 ®b) — rI)}.

The result can be obtained [9, Chapter 5] by extending the numerical
determinant theory: here we use (4.4) on the left-hand side of (4.6), and
apply (2.4) to the right-hand side.

5. Multiplication operators. Associated with a system a € A" of Banach
algebra elements are the systems L, and R, of multiplication operators,
where, foreachj=1,2,...,n,

(5.1) L, (x)=ax (xeA) and R, (x) = xa; (xe A).

Lumer and Rosenblum obtained the analogue of (4.2), with L, and R,
in place ofa ® 1 and 1 ® b, in the case 4 =% (E, E) for a Banach space E.
To summarize a derivation of this result we recall the left and right
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“approximate point spectrum” [5, Definition 1.3] of a system of Banach
algebra elements:

(5.2) Iff'(a) = {se C"Zinf||x||g1 Z ||(aj — 5| = 0}
i=1

and

(5.3) et (g) = {se Cr:infy 21 Y. lIx(a; — s)ll = 0}.
j=1

Of course these are subsets of the left and right spectra (2.2) and (2.3);
there is equality if 4 =% (E, E) is the bounded linear operators on a
Hilbert space [5, Theorem 2.5], [2], and for a single element a = a, the
topological boundary of the spectrum includes the intersection of (5.2) and
(5.3) [5, Lemma 4.1]. The results of Lumer and Rosenblum [10] can be
derived from

THEOREM 5. If A = Y(E, E) for a Banach space E, and if S€ A" and
T e A™ are systems of bounded linear operators, then there is inclusion

(54)  5S) x (T) € 05l a(Ls, Ry) = 051(S) x o%#(T)
and

(5.5)  (S) x §™(T) = o9 4 (Ls, Ry) < 0#(S) x a™(T).
For single operators S = S; and T = T there is inclusion

(5.6) 0 (0.4(8) x 0 4(T)) € 0% aLs, R1) S04S) x 0 4T).

PRrROOF. The arguments for (5.4) and (5.5) are extracted from the proofs of
Theorem 9 and Theorem 10 of Lumer and Rosenblum [10]; then (5.6)
follows in the same way as (3.3).

For one polynomial f = f; in two variables, and for operators S = S,
and T = T, on a Banach space it follows, analogous to (4.3), that

(5.7) 0 g,4f (Ls, Ry) = f(04S) X 0 4T)).

This of course is the result of Lumer and Rosenblum [10, Theorem 10].
Also for a Hilbert space E we obtain equality throughout (5.4) and (5.5),
and hence analogues for Theorems 3 and 4.
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