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This note and [4] outline new methods of classifying submanifolds of a 
manifold, submanifolds invariant under a group action, and submanifolds 
fixed under a group action. These methods solve many previously difficult 
problems associated with codimension two. In particular, they lead to 
a better understanding of the role of knot theory in the general placement 
problem for manifolds; this will be accomplished via the definition and 
computation of the local knot cobordism group of a manifold. Many of 
the results are most efficiently described in terms of new algebraic 
X-theoretic groups introduced in [4], [5]. 

§1 has examples of the results on classification of embeddings of an 
ji-dimensional manifold Mn in Wn+2. This is used to solve the problem 
of finding a purely geometric interpretation of the periodicity of knot 
cobordism [7], [8], [9] and [3]. The knot cobordism groups were 
introduced by Milnor and Fox in the classical case [6] and computed 
by Kervaire and Levine in the high-dimensional case. Our methods are 
basically independent of theirs. 

§11 contains an outline of codimension 2 surgery. The obstruction 
groups are very large in even dimensions. Some applications to group-
actions, including problems of extending free cyclic group actions and 
the calculation of equivariant knot cobordism are in [4], [5], Results of 
this type follow from the classification theory for homology equivalent 
manifolds developed there. 

The connection between codimension 2 problems and homology 
equivalent manifolds has been suggested in previous work of the authors 
[3] and in Santiago Lopez de Medrano [10]. A detailed exposition of 
this theory, which involves our systematic generalization of the nonsimply 
connected surgery theory and surgery groups of C.T.C. Wall is, in [5]. 
In [4], [5], the knot cobordism group of a manifold, or of a 2-plane bundle 
over a manifold, is defined and computed in terms of an algebraic K-
theory. 
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Details, proofs and applications are in [5]. The results below are 
stated for piecewise-linear manifolds, group actions and locally-flat 
embedding. Analogous results are true for the differentiable and topo­
logical case, 

I. Recall that two embeddings f : X -» Y, i = 0,1, of manifolds are 
said to be concordant if there is an embedding F:X x I -• Y x I with 
F(U x) = fi{x\ i = 0,1. Gn denotes knot cobordism group in dimension n, 
i.e., the group of concordance classes of embeddings of the n-sphere 
Sn in Sn+2. Kervaire showed that G2k = 0. Levine showed G2k+i was 
an infinite direct sum of copies of Z, Z2 and Z4 and observed an algebraic 
isomorphism Gk = Gk+4, k ^ 1,3. In [3], it was proved that, for topo­
logical embeddings, Gk

op = Gk°£^ k ^ 3. By obtaining below two different 
classifications of the concordance classes of embeddings of Sn x M in 
$n+2 x M9 the problem of giving a geometric interpretation to the 
periodicity of knot cobordism is solved, 

Let i denote the usual inclusion of S" in Sn+2 and, for a closed manifold 
M of dimension fc, let; = i x l M : S " x M - > Sn+2 x M. Two embeddings 
a, j? of S" x M in S"+2 x M are said to be equivalent if there are p.l. 
homeomorphisms p^.S" x M -» Sn x M, p2:S

n+2 x M -+Sn+2 x M 
with ph i = 1,2, commuting up to homotopy with the projection onto M, 
with p = p2upi. Gn(M) will denote the concordance classes of equivalent 
embeddings of Sn x M in Sn+2 x M which are homotopic to j . A map 
WM-Gn+k-* Gn(M) is defined by letting, for a knot a representing an 
element of Gn+k9 q>n

M{u) be the knot arithmetic sum of j and a. 

THEOREM 1. Let M be a closed simply-connected manifold of dimension 
k > 3. Then cpJk : Gn+k -• Gn(M\ n > 1, is a one-to-one correspondence. 

A map Pn
M : Gn -> Gn(M) is defined for a knot a by taking its product 

with M. 

THEOREM 2. Let M be a closed simply-connected manifold of dimension 
k = 4q with index ± 1. Then Pn

M:Gn-+ Gn(M\ n > 3, fc a one-to-one 
correspondence. 

The desired geometric periodicity is now obtained by taking M to 
beCP2 . 

THEOREM 3. ((p£p2)~1Pcp2:Gn-+ G„+4, rc > 3, is an isomorphism of 
groups. 

Ifn = 3, (<Pçp2)~1Pcp2 is injective with cokernel Z2. 

(For topological knots the corresponding map is an isomorphism [3].) 
The map PJJ, is still injective if the index of M is odd. Bredon [1] has a 
different geometric description of the periodicity map Gn -• Gw+4. 
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II. For odd-dimensional manifolds, we show that the ambient surgery 
obstruction in codimension two is the abstract surgery obstruction. 
Precisely, let ƒ : W -+ F be a homotopy equivalence of closed manifolds 
of dimension n. A submanifold M of F determines, by making/transverse 
to M, an induced surgery problem and hence, for M a codimension 2 
submanifold, an element aM(f) of the Wall surgery obstruction group 
Ln_2(n1M). 

THEOREM 4. If n = 2k + 1, k > 2, the map ƒ is homotopic to a map 
(which we continue to calif) transverse regular to M with ƒ ~1(M) -> M 
a homotopy equivalence if and only if oM(f) = 0. Moreover, if aM(f) — 0, 
among the manifolds homotopy equivalent to M, those in one normal cobord-
ism class, and only those, will occur as ƒ _ 1 M for some ƒ in the given 
homotopy class. 

There is a corresponding relative form of the above result for manifolds 
with boundary. Recalling that L2k- x(0) = 0, a special case is the following. 

THEOREM 5. Let f:W-> V be a homotopy equivalence of closed mani­
folds of dimension 2k + 1, k > 2. Let M 2 k _ 1 be a simply-connected sub­
manifold of V. Then ƒ is homotopic to a map, transverse regular to M (and 
which we continue to calif) with / _ 1 ( M ) - > M a homotopy equivalence. 
Moreover, f~ 1M is uniquely determined by this. 

Using the relative form of this theorem for M = S2k x I and V = 
S2k+2 x ƒ, we obtain the classical result of Kervaire on the vanishing of 
the even-dimensional knot cobordism groups. 

The functors T introduced in [4], [51 describe the obstructions to 
ambient codimension 2 surgery in even-dimensional manifolds. L denotes 
the Wall surgery group functor [11]. Given M2k~2 a submanifold of 
W2k, there is a homomorphism 

p-.L^.^M) - K e r t r ^ Z ^ ^ - M)] - ZfaW]) - ^(n.W)). 

THEOREM 6. Let (M2k~2,dM) be a proper submanifold of (V2k,dV) 
and let f:(W,dW)-+(V,dV) be a homotopy equivalence of manifolds 
restricting to a homotopy equivalence dW -> dV. Assume, moreover, that 
f~1(dM)-+dM is a homotopy equivalence. Then ƒ is homotopic by a 
homotopy which is fixed on dWto a map (which we continue to calif) with 
ƒ _1(M) -> M a homotopy equivalence if and only if oM(f) — 0 and an 
obstruction x(f), defined if oM(f) = 0, as an element of the cokernel of p, 
vanishes. 

The proof of Theorem 4 uses the cobordism extension technique intro­
duced by Browder to study embeddings in codimension greater than 2 
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[2] and new methods of studying homology equivalent odd-dimensional 
manifolds. 
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