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The principal purpose of this announcement is to present an equivalent 
formulation of the invariant subspace conjecture for bounded linear 
operators acting on a Hubert space H. Specifically, the conjecture asserts 
that if B(H) denotes the algebra of bounded linear operators on H and 
AeB(H\ then A has a nontrivial invariant subspace. We show that 
the conjecture can be reduced to the study of operators having the 
property that their invariant subspaces are reducing spaces. In our 
earlier announcement of this result we called such an operator "com­
pletely normal" (cf. [2]); however, since then we have been convinced 
(by P. R. Halmos) that "reductive" is a more appropriate term. 

Throughout this note H will denote an arbitrary Hubert space. 
An element AeB(H) is called reductive if, and only if, each invariant 
subspace of A reduces A. A e B(H) is called normal-free if there is no 
reducing subspace ^ f o r A other than (0) such that A\Jt (the restriction 
of A to Jt) is normal. If S c B(H\ then S' is the set of all B e B(H) such 
that BA = AB and BA* = A*B for every AeS where A* denotes the 
adjoint of A. An element C e B(H) is called transitive if there are no 
invariant subspaces for C other than (0) and H. 

Our basic result is that if dim H > 1, then the invariant subspace 
conjecture is correct if, and only if, every reductive element of B{H) is 
normal. Inasmuch as the proof of the result requires an elaborate use 
of direct integral theory for rings of operators, we have not given proofs 
to the theorems. The complete proofs are expected to appear in a forth­
coming monograph on direct integral theory and its applications. 

If A G B(H) and is reductive and M an invariant subspace for A then 
we define 

N(Jt) = Jtn{A*\AA* - A*A)Ç\ÇeJt, n = (U, — } 1 . 

In particular we set H0 = N(H) and let P0 denote the projection of 

AMS 1970 subject classifications. Primary 47A15, 47C15; Secondary 46G10, 46J05. 
1 Partial support by NSF (GP-30284) is gratefully acknowledged. 

Copyright © American Mathematical Society 1972 

1020 



THE INVARIANT SUBSPACE CONJECTURE 1021 

H onto H0. The following theorem is one of the basic structure theorems 
for reductive operators. 

THEOREM 1. Let A be a reductive operator on the Hubert space H. 
(a) If M is an invariant subspace for A, then N(M) is an invariant 

subspace for A which is contained in M. 
(b) If M and M^ are invariant subspaces of A with Jix a M, then 

A\Jti is normal if and only if, Jtx a N(Ji). 
(c) If Mis an invariant subspace for A, then A\M is normal if and only 

if M cz H0. A\JI is normal-free if and only if M c= HQ. 
(d) P0 is a projection in the center of {A}', If' jttis an invariant subspace 

for A, then Ji can be decomposed uniquely as an orthogonal direct sum 
Jt± + JÏ2 of invariant subspaces M^ and ^ for A such that A\Jtl is 
normal and A\Ji2 is normal-free; moreover, M^ = P0MO an^ M2 = 
(I - P o )M0. 

As an immediate consequence of Theorem 1, we have 

COROLLARY 1.1. Let A be*a reductive operator acting on the Hubert 
space H. 

(a) If M is an invariant subspace for A which is contained in its normal 
free subspace, then either M = (0) or dim M is infinite. 

(b) If dim H < oo, then A is normal. 

REMARK. In view of Theorem 3 below, (b) of the above corollary 
allows us to assert that "if 1 < dim H < oo and A e B(H\ then A has 
a nontrivial invariant space" without resorting to the Jordon form of A. 

One of the difficulties encountered in the applications of direct integral 
theory is proving that vector valued functions are measurable. Our main 
tool in this direction is our next theorem which we call "the metric 
approximation theorem." In order to state the theorem we shall make 
a few measure theoretic conventions. If (M, I , p) is a finite measure space, 
then fi* denotes the outer measure corresponding to JX. A measurable 
cover of a subset T of M is a measurable set U (e 2) such that every 
measurable subset of U — T is null and such that T — U is a subset of 
a null set. (We do not assume that \i is complete.) Such a measurable 
cover U always exists and fi(U) = iu*(T). Moreover, if l ^ is a second 
measurable subset of M, then we observe that Ul is a measurable cover 
of T if, and only if, the symmetric difference UAUi is null. This obser­
vation leads to all of the properties of measurable covers that are needed 
for the next theorem. 

THEOREM 2. Let (M, E,/*) be a finite measure space, Ta subset of M, 
{Ki9 (5?}"=1 a finite family of separable metric spaces (ôt is the metric 
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on the space Kt), Ft:M -> Kt a function for i = 1,2, • • -, n, e > 0 and 
0 < a < 1. 

(a) Then there exists a subset Tx of T and measurable functions Gt 

with finite range for i = 1,2,- -, m such that jU*(Ti) ^ a/̂ *(T) and such 
that Ô^F^m), Gi(m)) < e for i — 1, 2, ..., n if m G 7]. 

(b) If in addition to the above hypothesis, we assume that M is a topo­
logical space, Z contains all clopen (i.e. open and closed) subsets of M, 
and every subset of M has a clopen measurable cover, then the functions 
{ &i }?= l in the conclusion above can be chosen to be continuous. 

In our applications of Theorem 2 we only use the case where n = 2. 

The proofs of our main results require a great deal of the theory 
of direct integral decompositions for von Neumann algebras. The neces­
sary literature for our use of the theory can be found in [3], [5], [6] 
and [8]. In what follows, E will denote a weakly closed symmetric subring 
of B(H) such that its commutant E has a cyclic vector for H. M denotes 
the maximal ideal space of E and for BeE the mapping B -• È(m) 
denotes the Gelfand transform of B. 

THEOREM 3. Suppose AeE with direct integral decomposition A £ 
\M Am dn(m) and T denotes the set of me M for which Am is not transitive. 

(a) T is measurable. Furthermore, if0<(x<l, there exists a clopen set 
U a M with fi(U) ^ a/i(T) and vectors <feH, i = 1,2, with direct 
integrals ƒ$ £m dfi{m) such that 

(i) ||̂ m\\ = xu(m) everywhere, %M(m) the characteristic function of U 
on M, and 

(ii) for every nonnegative integer n, (A^ ^, £*) = 0 a.e. 
(b) If, in addition, A is reductive and E is a maximal symmetric com­

mutative subring of {A, A*}', then JX(T) = 0. In this case M is the disjoint 
union of two clopen sets Mw and Mx with dim(Hm) = 1, meM1, and 
dim(tfw) = x0> meM^; moreover P^ and Px where P^m) = XMJ™) 
Pi(m) = xMl(

m) are respectively the normal-f ree and normal projections 
of A. 

COROLLARY 3.1. If H is a Hubert space and dim(H) > 1, then the 
following statements are equivalent. 

(i) Every element of B(H) has a nontrivial invariant subspace. 
(ii) If A is a reductive element of B(H), then A is normal. 

We note that other hypotheses will lead to the validity of (ii) of Corollary 
3.1; for example, using the results of Aronszajn-Smith and Bernstein-
Robinson (cf. [1], [7], or [4]) we have the following: 

COROLLARY 3.2. If A is a reductive element of B(H) which is polyno­
mial^ compact, then A is normal. 
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Also, we have 

COROLLARY 3.3 IfA is a reductive element ofB{H) and A ^ \%Amdix(m\ 
then Am is transitive a.e. 
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