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(M, dM) c (AT, dN) denotes a PL embedding of oriented PL manifolds, 
with M n dN = dM, codimN(M) = 2. Two such embeddings i0, h are 
concordant if there exists a PL embedding (M x ƒ, dM x I, M x dl) cz 
(N x I,dN x I,N x dl) restricting to i0>*'i on M x 0,M x 1, respec­
tively. The embedding (M, dM) c (AT, 3iV) is locally flat if every point 
x G M has a PL ball U1 for its neighborhood such that Dn n M a Dn 

is PL conjugate to the standard embedding Dn~2 a Dn. 
This is the problem considered here: When is the embedding (M, dM) <= 

(AT, dN) concordant to a locally flat embedding? 
Let Gk denote the (geometric) group of concordism classes of locally 

flat knots having dimension k. Stabilizing, and factoring out by the 
periodicity isomorphism, we get a Z4-graded group, which is denoted 
(somewhat akwardly) as G*. Kf/PL, Kfjjöp denote the cohomology 
theories having F/PL, F/TOP for their zeroth loop spectrum [11]. 

THEOREM. There are characteristic classes Ö(M, N) e H2(M, G3), j8(M, N) 
^ Kf/PL(M\ y(M, N) e KfjföpiM, G*+1) satisfying the following: 

(a) These classes depend only on the concordism class of the embedding 
(M, dM) c (JV, dN). 

(b) They vanish if and only if (M, dM) cz (N, dN) is concordant to a 
locally flat embedding. 

Construction of 0, /?, y. 
8. For each simplex AkeM there are cells DM(Ak), DN(Ak)—the dual 

cells to Ak in M, AT, respectively. These satisfy DN(Ak) n M = DM(Ak); 
Dm(Ak) c DxiA*) is a codimension 2 embedding of discs. Try to concord 
(M, dM) <z (AT, dN) to a locally flat embedding by inductively doing so 
for the embeddings (DM(Ak) c DN(Ak). The first possible nonvanishing 
obstruction appears as a cocycle defined on the 2-dimensional dual 
cells in M. This represents 0(M, N) G if 2(M, G3) [10]. 

y. Let (#, &ô) denote a regular neighborhood for (M, 3M) cz (AT, ÔJV). 
A denotes its topological boundary in N. There is a linear bundle T 
defined over M, having D2 for fiber, and an integral-homology equivalence 
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ƒ : (R, R) -> (T, T). Using ƒ in conjunction with the new surgery groups of 
Cappell-Shaneson, a splitting obstruction can be defined along any 
singular Z^-manifold g:(V,ôV) -* M asm [6]. By the universal coefficient 
theorem for Kfj-f^p, these represent an element y(M, N) e KpjruFiM, G* +1). 

j8. For large r, ƒ x ÏD,: (R9R) x (D\ dDr) -> (T, t) x (D^dD*) repre­
sents an element P(M,N)eKf/PL(M). 

REMARK 1. There is a classifying space BSPLT (2) for codimension 2 
PL thickenings of PL manifolds. There are universal characteristic 
classes 

6eH2(BSPL~(2)9G3), 

peK°F/PL(BSPL~(2)l 

yeKyör(BSPL~(2lG*+i). 

Modulo low-dimensional complications (over the 4 skeleton of BSPL~ (2)) 
there is a homotopy equivalence 

BSPL~ (2) ^ > BSO(2) x (F/TOP 0 0* + x). 

REMARK 2. The classes 0, /?, y are related as follows. The geometric 
stabilization of 0 is determined by the restriction of y to the 2-skeleton 
of M. The stabilization of jS is a direct summand of y. 
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