THREE CHARACTERISTIC CLASSES MEASURING THE OBSTRUCTION TO PL LOCAL UNKNOTEDNESS

BY LOWELL EDWIN JONES

Communicated by S. S. Chern, May 12, 1972

 $(M,\partial M)\subset (N,\partial N)$ denotes a PL embedding of oriented PL manifolds, with $M\cap\partial N=\partial M$, codim $_N(M)=2$. Two such embeddings i_0,i_1 are concordant if there exists a PL embedding $(M\times I,\partial M\times I,M\times\partial I)\subset (N\times I,\partial N\times I,N\times\partial I)$ restricting to i_0,i_1 on $M\times 0,M\times 1$, respectively. The embedding $(M,\partial M)\subset (N,\partial N)$ is locally flat if every point $x\in M$ has a PL ball D^n for its neighborhood such that $D^n\cap M\subset D^n$ is PL conjugate to the standard embedding $D^{n-2}\subset D^n$.

This is the problem considered here: When is the embedding $(M, \partial M) \subset (N, \partial N)$ concordant to a locally flat embedding?

Let G_k denote the (geometric) group of concordism classes of locally flat knots having dimension k. Stabilizing, and factoring out by the periodicity isomorphism, we get a Z_4 -graded group, which is denoted (somewhat akwardly) as G_* . $K_{F/PL}^*$, $K_{F/TOP}^*$ denote the cohomology theories having F/PL, F/TOP for their zeroth loop spectrum [11].

THEOREM. There are characteristic classes $\theta(M, N) \in H^2(M, G_3)$, $\beta(M, N) \in K^0_{F/PL}(M)$, $\gamma(M, N) \in K^0_{F/TOP}(M, G_{*+1})$ satisfying the following:

- (a) These classes depend only on the concordism class of the embedding $(M, \partial M) \subset (N, \partial N)$.
- (b) They vanish if and only if $(M, \partial M) \subset (N, \partial N)$ is concordant to a locally flat embedding.

Construction of θ , β , γ .

- θ . For each simplex $\Delta^k \in M$ there are cells $D_M(\Delta^k)$, $D_N(\Delta^k)$ —the dual cells to Δ^k in M, N, respectively. These satisfy $D_N(\Delta^k) \cap M = D_M(\Delta^k)$; $D_m(\Delta^k) \subset D_N(\Delta^k)$ is a codimension 2 embedding of discs. Try to concord $(M, \partial M) \subset (N, \partial N)$ to a locally flat embedding by inductively doing so for the embeddings $(D_M(\Delta^k) \subset D_N(\Delta^k)$. The first possible nonvanishing obstruction appears as a cocycle defined on the 2-dimensional dual cells in M. This represents $\theta(M, N) \in H^2(M, G_3) \lceil 10 \rceil$.
- γ . Let (R, R_{∂}) denote a regular neighborhood for $(M, \partial M) \subset (N, \partial N)$. \dot{R} denotes its topological boundary in N. There is a linear bundle τ defined over M, having D^2 for fiber, and an integral-homology equivalence

AMS 1970 subject classifications. Primary 57D20; Secondary 57C50.

 $f:(R,R)\to(\tau,\tau)$. Using f in conjunction with the new surgery groups of Cappell-Shaneson, a splitting obstruction can be defined along any singular Z_q -manifold $g:(V, \delta V) \to M$ as in [6]. By the universal coefficient theorem for $K_{F/TOP}^*$, these represent an element $\gamma(M, N) \in K_{F/TOP}^0(M, G_{*+1})$.

 β . For large $r, f \times 1_{D'}$: $(R, R) \times (D', \partial D') \rightarrow (\tau, \tau) \times (D', \partial D')$ represents an element $\beta(M, N) \in K_{F/PL}^0(M)$.

REMARK 1. There is a classifying space BSPL (2) for codimension 2 PL thickenings of PL manifolds. There are universal characteristic classes

$$\theta \in H^2(BSPL^{\sim}(2), G_3),$$

 $\beta \in K_{F/PL}^0(BSPL^{\sim}(2)),$
 $\gamma \in K_{F/TOP}^0(BSPL^{\sim}(2), G_{*+1}).$

Modulo low-dimensional complications (over the 4 skeleton of $BSPL^{\sim}(2)$) there is a homotopy equivalence

$$BSPL^{\sim}(2) \xrightarrow{f \times \gamma} BSO(2) \times (\overline{F/TOP} \otimes G_{*+1}).$$

REMARK 2. The classes θ , β , γ are related as follows. The geometric stabilization of θ is determined by the restriction of γ to the 2-skeleton of M. The stabilization of β is a direct summand of γ .

BIBLIOGRAPHY

- 1. S. Cappell and J. Shaneson, Submanifolds, group actions, and knots. I, II, Princeton University, 1972 (mimeographed notes).
- M. A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 32 #6479.
 J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110; addendum,

- 10. H. Noguchi, Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203-213.
- 11. L. Jones, Combinatorial symmetries of D^m. III, Berkeley, California, 1971 (lecture notes).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics, Princeton University, Princeton, New Jersey 08540