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DEVELOPMENTS IN SCHAUDER BASIS THEORY1 

BY C. W. McARTHUR2 

1. Introduction. In the forty-four years since 1927 when J. Schauder 
[101] introduced the notion of a topological basis for a Banach space, 
well over two hundred papers on basis theory have been published. About 
one-fifth of these appeared in the twenty-three years before 1950 with 
the other four-fifths appearing in the twenty-one years from 1950 to the 
present. Surely the devastating effect of World War II is one factor in 
this distribution of mathematical output. Indeed, two of the originators 
of the abstract theory of bases, J. Schauder and S. Banach, were essentially 
casualties of the war, Schauder losing his life during the war and Banach 
dying prematurely shortly thereafter. 

It will be the purpose of this paper to trace the development up to 
the present time of several theorems or problems introduced in 1932 by 
Banach [6], as well as to report on some developments not anticipated 
by Banach. 

We first mention a problem considered by Fréchet and Banach which 
has only recently been solved and in whose solution basis theory played 
an important role. Which of the topological linear spaces are homeo­
morphic? In 1928, [33, pp. 94-96] Fréchet asked whether the separable 
Hubert space I2 was homeomorphic to (s), the space of all real sequences 
with the product topology. In 1932, [6, p. 233] Banach stated that Mazur 
had shown that (s) was not homeomorphic to I2. It was subsequently 
realized that the question was still open. Indeed, in 1966 [1], R. D. Ander­
son was the first to prove that I2 and (s) are homeomorphic. C. Bessaga 
and A. Pelczynski [8], [13] in the meantime had shown that "Under the 
conjecture that all separable infinite dimensional Banach spaces are 
homeomorphic to /2, every separable infinite dimensional Fréchet space 
£, with E 7e (s) is homeomorphic to P." Thus when M. I. Kadec [53] 
showed, using basis theory as a main tool, that all separable infinite 
dimensional Banach spaces are homeomorphic, Anderson's result provid­
ed the missing link to give the startling result: All separable infinite 
dimensional Fréchet spaces are homeomorphic. 

1 An expanded version of an invited address delivered to the 689th meeting of the Society 
in Auburn, Alabama on November 20, 1971; received by the editors January 10, 1972. 
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Throughout this lecture £ will denote a Hausdorff topological vector 
space or some specialization thereof and E' the space of continuous linear 
functionals on E. A pair of sequences {xj c E and {ƒ•} c E is a biorthog-
onal system for £ provided that /f(x,) = <5fJ-. S. Banach [6] devoted a 
chapter of his book to biorthogonal systems. A biorthogonal system 
{xhfi} is a Schauder basis for £ if and only if the series JjLjf^Xi 
converges to x for each x e E. In 1927, J. Schauder introduced the concept 
of Schauder basis for Banach spaces and constructed a Schauder basis for 
C[0,1]. Note that if {xhft} is a Schauder basis for E and x = Yf=i atxi 
then at = ƒ•(*), i = 1,2,... . Thus the coefficients in the expansion of an 
element in a Schauder basis are unique. A sequence {xJ in E is a (topo­
logical) basis for £ if and only if corresponding to each x e £ there is a 
unique sequence of scalars {at} such that the series Y?=i aixi converges 
to x.3 A sequence {xj in £ is basic iff it is a basis for its closed linear 
span [xf]. When {xj is a basis for £ we define the coefficient functionals 
fi on £ by f{x) = at if x = J j i x 0,0c,-, x e £, i = 1,2,... . Banach [6, 
p. I l l ] showed that the coefficient functionals of a basis for a Banach 
space are necessarily continuous, i.e., a basis for a Banach space is a 
Schauder basis. 

The literature on bases now contains two books [73], [112] which have 
been published in the last three years. 

2. Bases and the approximation property. The question, "Does every 
separable Banach space have a basis" was posed by Banach [6, pp. H i ­
l l 2, 245]. It has remained unanswered for thirty-nine years and is now 
known as "the basis problem." Recent work reveals that the basis problem 
is closely related to another important problem of functional analysis 
—"the approximation problem." 

A Banach space £ is said to have the approximation property iff cor­
responding to each compact set K c £ and s > 0 there exists a finite 
dimensional bounded linear operator F from £ into £ such that 
||x - F(x)\\ < s for all x e K. If, moreover, there exists a constant A > 0 
which is independent of K and s and such that F can be chosen with 
||£|| ^ A then £ is said to have the bounded approximation property. A 
Banach space with a basis has the approximation property [112, p. 170].4 

Grothendieck [40] proved that if £ is reflexive or £ is a separable dual 
space, then the approximation property for £ implies the bounded approx­
imation property for £ implies the bounded approximation property 

3 If the basis expansion for each x in E converges unconditionally the basis is an un­
conditional basis. In the contrary case, the basis is a conditional basis. 

4 In June 1972 Per Enflo, at an analysis conference at Hebrew University, Jerusalem, 
Israel, announced the result: There exists a Banach space without the approximation 
property and thus there exists a separable Banach space without a basis. 
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with X — 1. It would be very desirable to have a simple proof of Grothen-
dieck's result proved without using his machinery of tensor products. 

In order to make a first connection between the basis problem and the 
approximation problem, we state a recent important result on bases. 
S. Karlin [58] in 1948 asked if a sufficient condition for a Banach space E 
to have a basis would not be for E to have a basis in its strong topology. 
That this condition is indeed sufficient has just been shown by 
Johnson, Rosenthal, and Zippin [51]. They have, in fact, shown 
more. A basis {xt} for a Banach space is shrinking iff for each feE, 
l i m ^ s u p l l / M l i x e M ^ L , , , ||x|| ^ 1} = 0. A shrinking basis {*;,ƒ} 
for a Banach space has the property that {f} is a basis for E with its 
strong topology. Their theorem is : 

THEOREM 2.1. Let E be a Banach space. Then E has a shrinking basis if 
either of the following holds: 

(a) E has a basis; 
(b) E has a basis and E is (strongly) separable and has the bounded 

approximation property. 

J. Lindenstrauss [65] improved a theorem of James [47] to the follow­
ing: 

THEOREM 2.2. For any separable Banach space E there exists a Banach 
space Y with a monotone shrinking basis such that 

(1) E is a quotient of Y', and 
(2) Y" = JY®E\ 

where J(Y) is the canonical embedding of Y into Y" and J(Y) © E is the 
direct sum of J(Y) and E. (A basis {î „} is monotone iff |lX?=i tf#f|| 
^ C?=i a ^ i l for arbitrary scalars aua2,...,an+1.) 

Lindenstrauss [65] obtains the following corollary. 

COROLLARY 2.3. Either every Banach space E has the approximation 
property or there is a Banach space W such that 

(a) W has a basis, and 
(b) W' is separable but does not have the approximation property and 

hence does not have a basis. 

PROOF. It follows from the definition and the Hahn-Banach theorem 
that if there is a Banach space which does not have the approximation 
property, then there is a separable space E which fails to have the approx­
imation property. As shown by Grothendieck [40] we may assume that 
E is a subspace of c0. Letting W = Y' where Y is defined by Theorem 2.2, 
we have that W has a basis and W' is separable. By theorem 2.2, W = Y' 
has a basis. By part (2) of the theorem E is isomorphic to a complemented 
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subspace of W' and since E does not have the approximation property, 
it follows that W' does not have the approximation property. We use here 
a result of Grothendieck [40]; namely, if E has the approximation 
property so does E. 

Finally, Johnson, Rosenthal, and Zippin [51] and independently 
Pelczynski [91] proved 

THEOREM 2.4. A separable Banach space has the bounded approximation 
property iff it is isomorphic to a complemented subspace of a Banach space 
with a basis. 

A weaker version of Theorem 2.4 with finite dimensional Schauder 
decomposition instead of basis was proved earlier by Pelczynski and 
Wojtaszczyk [94]. In the above mentioned paper of Lindenstrauss, 
Theorem 2.4 was proved with the additional assumption that the space 
is a separable dual. The proof of Johnson-Rosenthal-Zippin is based on 
Theorems 2.1 and 2.2 above and the construction of Pelczynski and 
Wojtaszczyk mentioned above. The proof of Pelczynski [91] is direct 
(uses only the Auerbach lemma) and can be generalized to Fréchet spaces. 

W. Johnson has established strong connections between Markushevich 
bases (biorthogonal systems {*„,ƒ„} with {xn} fundamental and {ƒ„} 
total) and approximation properties. He has shown [48] that a separable 
Banach E space has the bounded approximation property iff E admits 
a Markuschevich basis which is a generalized summation basis in the 
sense of Kadec [48]. Johnson [49] also shows the following: Let £ be a 
separable complex Banach space. If E has the bounded approximation 
property, then there exists a Markushevich basis {xn, ƒ„} for E and a set 
{Aitn:i= 1,2,...,n; n= 1,2,...} of scalars such that for each xeE, 
x = l i m ^ YA=I knfi(x)*i-

3. The existence of basic sequences. If E is a topological vector space 
from what subsets of £ can one select a basic sequence? A first answer to 
this question was given by Banach [6, p. 238] who stated without proof 
that every infinite dimensional Banach space E contains an infinite 
dimensional closed subspace with a basis. Different proofs of this were 
given in 1958 by Gelbaum [39] and by Bessaga and Pelczynski [9], 
and in 1962 by Day [21], [22]. Day, in fact, proved that in every infinite 
dimensional normed space E there exists a biorthogonal system {xn} cz £, 
{ƒ„} cz E such that {xn} is basic, | |xj = \\fn\\ = 1, n = 1,2,..., and the 
norm of the mth partial sum operator is no greater than 1 + 1/m. Bessaga 
and Pelczynski [9] state the following theorem. 

THEOREM 3.1. Let {xn9 ƒ„} be a basis for a complete metric linear space E 
which either is locally convex (i.e., is a Fréchet space) or else has a bounded 
neighborhood of zero. If a sequence {yn} in E satisfies the conditions 
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lim„^oo fi{yn) = 0, i = 1,2,..., and t/zere exists a neighborhood V of 0 
swc/z t/zat y„ ̂  K, rc = 1,2,... , then there exists a subsequence {yPn} which 
is a basic sequence equivalent to a block basis. (Definition, §7.) 

COROLLARY 3.2. (a) Each infinite dimensional Fréchet space contains a 
basic sequence. 

(b) If Y is an infinite dimensional subspace of a complete metric linear 
space E with a bounded neighborhood of zero and a basis, then Y contains 
a basic sequence. 

In a recent paper of Joel H. Shapiro [103] a selection principle for 
another class of nonlocally convex spaces is developed. If E is a real or 
complex linear space, a nonnegative, subadditive functional || • || is called 
an F-norm if it has the additional properties : 

(a) ||x|| = 0 i f f x = 9. 
(b) ||fx|| :g ||x|| for all scalars t with \t\ ^ 1. 
(c) lim^^HO/fOxll = 0 for each xeE. 
(d) The metric d(x, y) = ||x — y\\ is complete. 
A linear space equipped with an F-norm is an F-space. A nonnegative, 

subadditive functional S on a linear space E is called a p-seminorm 
(0 < p ^ 1) iff S(tx) = |t|p5(x) for all scalars t and vectors x, and a p-norm 
iff, in addition, x = 8 whenever S(x) = 0. If the topology of E is induced 
by a family {Sj of prseminorms, then E is called locally pseudo-convex 
(or semi-convex). Shapiro's selection principle is 

THEOREM 3.3. Let E be a locally pseudo-convex F-space with a basis 
{xn>A}- V {yn} *5 a sequence in E with inf ||j/J > 0 and limn fi(yn) = 0, 
i — 1,2,... , then there exists a basic subsequence {ynk} equivalent to a 
block basis with respect to {xn}. 

Shapiro uses the above theorem in giving an example of a nonlocally 
convex F-space with the property that every infinite dimensional subspace 
contains a further infinite dimensional locally convex subspace. 

M. I. Kadec and Pelczynski [55] have given further criteria for the 
existence of basic sequences. 

Let £ be a Fréchet space and E the conjugate space to E. A set T a E is 
said to be norming for E iff for every fundamental system of bounded sets 
{Bn} in E the sequence {|| • | |Bnnr} with | |x| |Bnnr = sup{ | / (x ) | : /sB n n T} 
for x G £ is a generating family of seminorms for the topology of E. The 
set r = E is an example of a norming set. We shall write xn -> r 0 iff 
ƒ (x„) -> 0 for every ƒ G T. 

The next three theorems are the main results of Kadec and Pelczynski 
[55] on the selection of basic sequences. 

THEOREM 3.4. A subset M in an arbitrary Fréchet space E contains a basic 
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sequence iff there is a norming set F <z E and a sequence {xn} of elements of 
M such that x„ # 0 (n = 1, 2 , . . . ) and tnxn -> r 0 for every sequence of 
scalar s {tn}. 

THEOREM 3.5. Let {xn} be a sequence in a Fréchet space E which does not 
converge to zero and suppose xn -> r 0 for some norming subset T cz E'. 
Then {xn} contains a basic sequence. 

THEOREM 3.6. Let M be a bounded noncompact set in a Fréchet space E. 
Then there exists a basic sequence in M. 

V. D. Milman and J. B. Tumarkin [82] point out that Theorem 3.5 
above in the case T = E' has a hypothesis which is never satisfied in a 
nuclear or, indeed, a Montel space. They offer the following theorem 
"free of this defect." 

THEOREM 3.7. Let E be a Fréchet space or an (LF) space {a certain count­
able inductive limit of Fréchet spaces). If {x„}*=1 is a sequence in E such 
that for every sequence {ck} (ck > 0), {ckxk}f=1 has no subsequence weakly 
converging to x0 / 0, then {xn} contains a basic subsequence. 

In 1962 V. I. Gurariï [41] showed that in every infinite dimensional 
Banach space there exists a basic sequence which is a conditional basis 
for its closed linear span. It is not known whether every infinite dimen­
sional Banach space contains an infinite dimensional subspace with an 
unconditional basis. However, it has been shown [12] that in each Fréchet 
space which is not isomorphic to any Banach space there is an (infinite) 
unconditional basic sequence (spanning a nuclear space). 

Call a biorthogonal system {xn, ƒ„} bibasic if {xn} is a basic sequence 
in E and {ƒ„} is basic in the strong topology of E'. It can be shown that 
if £ is locally convex and the partial sum operators sn(x) = £jL x f{x)xh 

n = 1,2,. . . , x e E, are equicontinuous then {xhf} is bibasic. In particular 
a Schauder basis {xhf} for a Fréchet space is bibasic. However, an 
arbitrary biorthogonal system {xhf) in a Banach space with {x j basic 
need not be bibasic. It has recently been shown by Davis, Dean, and 
Lin [18] that every infinite dimensional Banach space E admits a biortho­
gonal system {xh ƒ*}, {xt} c £, {f) c £', which is bibasic. 

Johnson and Rosenthal [50] make the following definitions. Let E be 
a Banach space. A sequence {ƒ„} a E' is called w*-basic provided that 
there is a sequence {xn} a E so that {xn, ƒ„} is biorthogonal and the series 
Yf=i f(*i)fi is w* convergent to ƒ for each ƒ in the w* closure of [ / J . 
Johnson and Rosenthal [50] prove the following w*-analogue of the 
Bessaga-Pelczynski selection principle. 

THEOREM 3.8. Suppose that E is a separable Banach space, {ƒ„} cz E\ 
fn^ 0, and limsupH fn\\ > 0. Then {ƒ„} has a w*-basic subsequence, {/„J. 
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Furthermore, {ƒ„.} may be chosen such that if {zn.} c E is selected with 
{*»,>ƒ»,} biorthogonal and sm:[fnJ -* [ / J fe d^ned (/or m = 1,2,...) 
fey ««(ƒ) = £ £ M / C O / * /or allfe[fnil then \\sm\\ -> 1. ( 1 denotes f to? 
w* closure of A.) 

They use this as a main lemma for the following results which solve 
two problems posed by Pelczynski [89]. 

(a) If £ is a separable infinite dimensional Banach space, then E has 
a quotient space with a basis, i.e., there exists a closed subspace M of 
infinite codimension in E such that E/M has a basis. 

(b) Every separable conjugate space contains a boundedly complete 
basic sequence. 

It was shown by Markushevich [72] that every separable Banach 
space admits a Markushevich basis. Banach [6] asked, "Does every 
separable Banach space admit a bounded Markushevich basis?" i.e., a 
Markushevich basis {xn9fn} with sup{||x„|| \\fn\\:neco} < +oo. This 
question remains open. However, Davis and Johnson have shown [20] 
that if £ is a separable Banach space, then to each e > 0 corresponds a 
biorthogonal system {x„, ƒ„} with sup„||xj | | / J < 1 + s which may be 
selected either so that {x„} is fundamental or {ƒ„} is total. 

Let {x„, ƒ„} be a biothogonal system with {ƒ„} total for a Banach space 
E. A scalar sequence {an} is a multiplier of an element x in E with respect 
to {x„, ƒ„} iff there exists y in E with fn{y) = anfn{x\ n = 1 ,2 , . . . . Let 
M(x, {xn, ƒ„}) denote the set of all multipliers of x and let M(£, {x„, ƒ„}) 
= n{M(x,{x„, /M}):x€E}. 

Mityagin [84] raised the question: If £ is separable and M(£, {x„, ƒ„}) 
contains every sequence of the form {e„} where sn is either 0 or 1 for each 
n, is {x„} an unconditional basis for El 

Kadec and Pelczynski [55] subsequently raised this question: If E is 
separable and x is an element of £ such that M(x, {x„, ƒ„}) contains each 
sequence of the form {e„} with en equal to either 0 or 1 for each n, does the 
series Y^= i fn(

x)xn converge unconditionally to x? 
An affirmative answer to the second question clearly answers the first 

affirmatively. The first question was settled affirmatively by Davis, Dean, 
and Singer [19] and the second one was answered affirmatively by 
Bachelis and Rosenthal [5] for Banach spaces which do not contain a 
subspace isomorphic to (m) and, in particular, for separable Banach 
spaces. 

4. The continuity and weak basis theorems. Although Banach gave a 
proof only for Banach spaces [6], he appears to have known this more 
general theorem. 

THEOREM 4.1 (CONTINUITY THEOREM). A basis for a complete metric 
linear space is a Schauder basis. 
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He appears to implicity use the above theorem in proving that the 
separable complete metric linear space S [6, p. 9; p. 239] does not admit 
a basis since S has no nontrivial continuous linear functionals. Recall that 
S is the space of Lebesgue measurable functions on the interval [0,1] with 
the distance between x and y defined by ^\x(t) — y(t)\/(l + \x(t) — y(t)\) dt. 

Proofs of Theorem 4.1 have been given by Newns [86] for the Fréchet 
space case and independently by Nikolskii [87], Bessaga and Pelczynski 
[11], and Arsove [2] for the complete metric linear case. All of these 
proofs, like Banach's, depend upon the open mapping or closed graph 
theorems. Does the continuity theorem really depend upon the open 
mapping theorem? It is known that a w*-basis for the dual of a Banach 
space need not be a w*-Schauder basis. The w*-topology is not barrelled. 
Could it be that a basis for a sequentially complete barrelled space is a 
Schauder basis? 

We next consider the weak basis theorem. 

THEOREM 4.2. A weak basis for a Fréchet space E (i.e., a basis in the weak 
topology of E) is a basis for E with its initial topology. 

The above theorem is stated for the Banach space case in the appendix 
of Banach's monograph [6, p. 238] and is attributed to S. Mazur by his 
students. Karlin [58] was the first to sketch a proof of the weak basis 
theorem for Banach spaces. Day [21] gave proofs of the theorem with the 
additional assumption that either the space was weakly sequentially 
complete or the coefficient functionals were continuous. Bessaga and 
Pelczynski [11] were the first to prove that a weak basis for a Fréchet 
space is a basis. Ruckle [96] proved that a weak basis of closed subspaces 
of a Banach space is a basis of subspaces. (A sequence of subspaces {Mt} 
of £ is a basis of subspaces of £ if corresponding to each xeE there 
exists a unique sequence {x f},x feM f , such that x = Yf=i xi-) 

Arsove and Edwards [3] showed that 

THEOREM 4.3. A weak Schauder basis for a barrelled space E is a Schauder 
basis for E. 

This theorem is a corollary of an earlier result of Dieudonné [25] 
which says, in effect, that a sufficient condition for a biorthogonal system 
{ x j e £,{ƒ.} c E\ to be bibasic where £ is a barrelled space is that 
{YJ= i fi(x)xi}™= i be bounded for each xeE. This boundedness condition 
is clearly satisfied when {xi9 ƒ•} is a weak Schauder basis. Furthermore, 
E = [ x j when {xhf) is a weak Schauder basis since the weak closure 
and the closure of a subspace of a locally convex space coincide. 

A relatively simple proof of the weak basis theorem was discovered 
by the author [75] who actually proved the following slight generalization. 
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THEOREM 4.4. A weak basis of closed subspaces of a Fréchet space is a 
Schauder basis of subspaces of E. (A basis of subspaces { M j of E is a 
Schauder basis of subspaces if the projection Pn(x) = xn where x = Yj% x xh 

xt e Mh i = 1,2,.. . , is continuous on E for each n) 

We will sketch a proof of Theorem 4.4 in order to make explicit a 
principle used implicitly in the proof [75]. The principle is stated in the 
following lemma which can be used for a number of purposes in basis 
theory [76]. 

LEMMA. Let {S f} i e / be a family of linear functions from a vector space 
E into a linear topological space {F,3T} and suppose {Si(x)\iel} is 
bounded for each xeE. Then there exists a weakest vector topology £T' 
for E such that {St}ieI is ZT' — 3~ equicontinuous. If V = {V} is any 
local base of balanced ^-neighborhoods of 8 for (F,&~) then *V' 
= {V' : Ve V} where V' =f] ieI S^ l(V) is a local base of balanced neigh­
borhoods of 0 for (F, F'\ /ƒ (F, 3T) is locally convex so is (F, 3T'\ If (F, ST) 
is pseudo metrizable so is (F, 9~'\ If (F, 3T) is Hausdorff then (F, ST*) is 
Hausdorff if and only if 'St(x) = 6 for all i e I implies x = 9. If (F, &~) is 
locally convex and is generated by a family of seminorms P — {p} then ST' 
is generated by the family of seminorms P' — {p'} where for each peP, 
xeE, p'(x) = sup;6jp(S;(x)). 

We sketch the proof of Theorem 4.4 for the case of a weak basis. Let 
{Sn}™=l denote the family of partial sum operators of the weak basis. 
Since for each xe E, Sn(x) converges weakly to x it follows that 
{Sn(x) :neœ} is bounded for each x e E. By the lemma, there is a weakest 
vector topology F' for E such that the family {Sn} is y — ST equicon­
tinuous. By the Lemma F' is metrizable and locally convex. Using the 
fact that {Sn}neoy are the partial sum operators of a weak basis it can 
further be shown that & <= F' and ST' is complete. Thus, E has the two 
topologies y and !T' each making E a Fréchet space and with F c F'. 
By the open mapping theorem 2T = 2T'. Thus the partial sum operators 
are continuous in the initial topology which implies the coefficient 
functionals are continuous in the initial and, hence, the weak topology. 
Applying Theorem 4.3 we conclude that the weak basis is a Schauder 
basis for E. 

G. Bennett and J. B. Cooper [7] have shown that the weak basis and 
continuity theorems are valid for (LF) spaces. 

Two other papers at about the same level of generality were published 
in the same year, 1969. One by K. Floret [32] stated that every basis in a 
sequentially retractive (LF) space is a Schauder basis. The other by 
M. De Wilde [24] stated that a weak basis in a bornological sequentially 
complete and strictly netted space is a Schauder basis. 
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Dubinsky and Retherford [28] on the other hand give an example of 
a Mackey space with a weak Schauder basis which is not a basis. By a 
slight reformulation of their example, we note a better conclusion can be 
drawn. Namely, there exists a bornological space (hence, a Mackey 
space) with a weak Schauder basis which is not a basis in the initial 
topology of the space. The example is the following: 

Let (c) denote the Banach space of real convergent sequences with 
||x|| = supf6C0 \Çi\ if x = {Çt}. Let E denote the subspace of (c) consisting 
of those elements of (c) which are constant from some index on. Let E 
have the norm topology which it inherits from (c). Now I1 is the conjugate 
space of both E and (c). It is easy to show that the unit vectors {/J 
(/. = {ôtj}) are a weak Schauder basis for E. However, the vector / = {£J 
where ^ = 1 for all i e co is in E but not in the strongly closed linear span 
of {/J so {/J is not a norm basis of E. 

W. J. Stiles [114] has shown that for each p, 0 < p < 1, lp (a complete 
metric linear space) contains a weak Schauder basis which is not a basis. 

On the positive side, it has been observed [77] that if £ is a locally 
convex space which is weakly sequentially complete, e.g. a reflexive space, 
then a weak unconditional basis for E is an unconditional basis for E. 

5. Several theorems of James. In 1950 [45], [46], R. C. James created 
and used the basis theory needed to settle an outstanding conjecture of 
that time. He disproved the conjecture that a Banach space E is reflexive 
if and only if E and E' are isometric or E" is separable.5 

We will call a Schauder basis {xh ƒ•} for* a Hausdorff topological vector 
space E shrinking (Tumarkin [115] uses the perhaps more appropriate 
word "stretching") if ƒ is a basis for E' with its strong topology. This 
definition is easily seen to be equivalent to James's different definition 
for the Banach space case. Following Day [21] in terminology the 
Schauder basis {xhft} is boundedly complete iff the series Yf=iaixt 
converges for each sequence of scalars {at} for which the partial sums 
{Z?=i aixi}™=i a r e bounded. James showed that a Banach space with a 
basis is reflexive if and only if the basis is boundedly complete and shrink­
ing. He then constructed a Banach space, now called the James space J, 
with a basis which is shrinking but not boundedly complete. Furthermore, 
J is isometric with J". Moreover, the canonical mapping of J into J" has 
codimension 1. 

James's characterization of reflexivity has been successively generalized 
by Sanders [97], Retherford [95], Dubinsky and Retherford [29], and 
Cook [17], and Johnson [48]. 

5 It is interesting to note that only recently [50] has it been proved that if £ is infinité 
dimensional and E" is separable, then E contains an infinite dimensional reflexive subspace. 
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To state Cook's theorem we define a Schauder decomposition (equiv­
alent to the notion of basis of subspaces defined earlier when the subspaces 
are closed) of £ as a sequence of continuous projections {Pk} on E to­
gether with their ranges {R(Pk)} which satisfy the properties: Pk o p. = 0 
when k ^ j and for each x e £ , x = ££°= x Pk(x). A Schauder decomposi­
tion of £ will be denoted by {R{Pk), Pk}. If each R{Pk) is one dimensional, 
i.e., R(Pk) is the linear span of a single nonzero element xk e £, then the 
decomposition is actually representable as a Schauder basis {xfc, fk} for 
E with fk(x) defined by the equations fk(x)xk = Pk(x\ k = 1,2,..., x e E. 
Analogous to the basis case a Schauder decomposition is boundedly 
complete if for each bounded sequence {£fc = i xfc}®=1,xfcejR(Pfc), the 
series YJ?=IX* c o n v e r g e s - The Schauder decomposition {R(Pk\Pk} is 
shrinking iff {R(P'k), P'k) is a Schauder decomposition for E with the 
strong topology. Cook's theorem is 

THEOREM 5.1. Let E be a locally convex space with a Schauder decomposi­
tion {R(Pk),Pk}. E is semireflexive, i.e. the canonical mapping of E into 
the space of strongly continuous linear functionals on E is onto, if and only 
ifR(Pk) is semireflexive (k = 1,2,...) and {R(Pk\ Pk) is boundedly complete 
and shrinking. 

W. B. Johnson [48] has extended James's theorem to Markushevich 
bases (M-bases). Johnson calls an M-basis {xhf} M-shrinking if the 
strongly closed linear span of {ƒ•} is E. Also an M-basis {xh ƒ•} is boundedly 
complete iff whenever {yd} is a bounded net in E.such that for each iel, 
limdfi(yd) exists, there is an xeE such that f(x) = limdfi(yd) for each 
i e I. Johnson proves 

THEOREM 5.2. Let {xhf} be an M-basis for a locally convex space E. 
E is semireflexive iff {xhf] is M-shrinking and M-boundedly complete. 

Cook's theorem for the Schauder basis case follows from Johnson's 
theorem. 

James [45, Lemma 1] showed that an unconditional basis for a Banach 
space is boundedly complete if the space contains no subspace isomorphic 
to c0. He also showed [45, Lemma 2] that a Banach space with an un­
conditional basis is shrinking provided it has no subspace isomorphic 
to I1. 

Day [21, pp. 74, 75] gives the following improvements of James's 
lemmas. 

THEOREM 5.3. If {xt} is an unconditional basis for a Banach space E the 
following are equivalent: 

(a) The basis is boundedly complete. 
(b) The space is weakly sequentially complete. 
(c) There is no subspace of E isomorphic to c0. 
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THEOREM 5.4. An unconditional basis for a Banach space E is shrinking iff 
E has no subspace isomorphic to ll. 

Further improvements of James's theorems have been made by several 
people. L. J. Weill [116, Theorems 2.6, 2.7, 2.11] has shown 

THEOREM 5.5. Let E be a barrelled space with an unconditional Schauder 
basis. Then the statements below are equivalent: 

(1) The basis is boundedly complete. 
(2) E is weakly sequentially complete. 
(3) E is sequentially complete and contains no subspace isomorphic to c0. 

THEOREM 5.6. If E is a sequentially complete barrelled space with an 
unconditional Schauder basis, the basis is shrinking if and only if E has no 
subspace isomorphic to I1. 

The equivalence of (1) and (2) of Theorem 5.5 was proved by Dubinski 
and Retherford [29] who substituted for the hypothesis that E is barrelled 
the hypothesis that the basis is a bounded multiplier basis, and E' is 
co(E\E) sequentially complete. On the other hand, Tumarkin [115, 
Corollary to Theorem 4] has shown that if £ is sequentially complete 
(but not necessarily barrelled) then (1) and (3) of Theorem 5.5 are equiv­
alent. Tumarkin [115, Theorem 5] has also shown that if an unconditional 
basis of a sequentially complete locally convex space E is not shrinking, 
then E contains a subspace Et which, when endowed with a certain 
topology related to the relative topology, is isomorphic to J1. 

Weill's results above yield the following improvement of a theorem of 
James [45, Theorem 2]. 

THEOREM 5.7. A sequentially complete barrelled space with an uncon­
ditional basis is reflexive iff it contains no subspaces isomorphic to I1 or c0. 

Singer [107] showed that a Banach space in which every basic sequence 
is boundedly complete or every basic sequence is shrinking is reflexive. 
Zippin [120] then showed that a Banach space with a basis with the 
further property that every basis is boundedly complete or every basis is 
shrinking is reflexive. 

Kalton [56] has given the following improvements of these theorems : 

THEOREM 5.8. Let E be a sequentially complete locally convex space 
possessing a Schauder basis. 

(i) If every Schauder basic sequence in E is boundedly complete, then E 
is semireflexive. 

(ii) If every Schauder basic sequence in E is shrinking, then E is semi-
reflexive. 
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A Schauder basis {xn, ƒ„} is semi-shrinking if there exists a neighborhood 
V of zero such that xn $ V for all n and lim„_00 xn = 0 weakly. A Schauder 
basis {xn9 ƒ„} is semi-boundedly-complete iff {xn} is bounded and whenever 
{ZUi*iXi}?=i is bounded then l i m ^ ^ Xn = 0. 

THEOREM 5.9. Let E be a complete barrelled space possessing a normalized 
Schauder basis {xn, ƒ„} (i.e. {xn} is bounded and f or some neighborhood V 
ofO, xn $ Vfor all ri). The following are equivalent'. 

(i) Every normalized Schauder basis is shrinking. 
(ii) Every normalized Schauder basis is semishrinking. 

(iii) Every normalized Schauder basis is boundedly-complete. 
(iv) Every normalized Schauder basis is semi-boundedly-complete. 
(v) E is reflexive. 

6. Existence of bases. I. Singer [111] pointed out that the w*-dual of 
the Banach space m of all bounded sequences is a separable locally convex 
space which does not admit a w*-Schauder basis. N. J. Kalton [57] has 
recently given a more incisive example. 

A topological vector space E will be called œ-separable iff it possesses 
a subspace G of countable dimension such that every member of E is 
the limit of a sequence in G. If E has a basis, E is co-separable and if E 
is co-separable, then E is separable. Let x denote the cardinal of the con­
tinuum, and let K be the field of real or complex numbers. Kalton shows 

THEOREM 6.1. K* is a complete bornological, nuclear, Ptak space; it is 
separable but not œ-separable, and so does not possess a basis. 

Note too that since XN is a nuclear space it is a Montel space and hence 
a reflexive space and, thus, is barrelled as well. 

On the other hand, there are a number of separable Banach spaces for 
which bases have not been shown to exist [112, p. 17]. When Banach 
posed the basis problem, he also asked [6, p. 238] if the space C(1)(/w) 
has a basis. Not until 1969 was an affirmative answer given to the question 
by S. Schonefeld [102] and Z. Ciesielski [16], working independently. 
In 1970, P. Billard [14] announced there is a basis for the Hardy space H1 

as well as a Schauder basis of finite dimensional subspaces of the disc 
algebra A. 

The strongest known general result on the existence of a basis in a 
class of spaces which do not have an explicit presentation as function 
spaces is due to Johnson, Rosenthal, and Zippin [51]. 

THEOREM 6.2. Every separable 5£v space, 1 ^ p < oo, has a basis. In 
particular every complemented subspace of C[0,1] and Lp[0,1], 1 ^ p < oo, 
has a basis. 
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If every separable Banach space had a basis, it would, of course, be 
true that every separable Banach space would have a Schauder decom­
position into finite dimensional subspaces. However, it is not yet known 
whether a separable Banach space admits a Schauder decomposition of 
any kind. Inasmuch as nonseparable Banach spaces can have Schauder 
decompositions the question "Does every infinite dimensional Banach 
space admit a Schauder decomposition?" is of interest. Dean [23] gave 
a negative answer to the question. 

THEOREM 6.3. The Banach space (m) does not admit a Schauder de­
composition. 

In finite dimensional spaces, all bases are unconditional. It is not difficult 
to exhibit conditional bases for some of the classical infinite dimensional 
Banach spaces. For example [112, p. 423] in the space c0 the vectors 

xn = { 1 , . . . , 1 ,0 ,0 , . . .} , n = 1,2,..., 

n 

are a conditional basis whereas the unit vector basis for c0 is unconditional. 
It was natural to ask "Does every separable Banach space admit an 
unconditional basis?" In 1948 S. Karlin [58] showed that C[0,1] does 
not admit an unconditional basis. This result was improved in 1958 by 
Bessaga and Pelczynski [10] who showed 

THEOREM 6.4. A separable Banach space having the space J of James as a 
subspace, e.g. C[0,1], does not have an unconditional basis. 

It was also shown independently by A. Pelczynski [88] and I. Singer 
[105], [106] that 

THEOREM 6.5. Any weakly sequentially complete Banach space not 
isomorphic to a conjugate space (e.g. L[0,1]) does not have an unconditional 
basis. 

On the positive side, J. E. Shirey and R. E. Zink [104] have recently 
proved a generalization of the following theorem of Gaposhkin [36] : 

THEOREM 6.6. The Haar functions form an unconditional basis for the 
reflexive Or liez spaces. 

On the other hand, the following was shown recently by A. Pelczynski 
and S. Kwapien [92] and also by Lindenstrauss and Pelczynski [67]. 

THEOREM 6.7. There exists a separable reflexive Banach space which does 
not admit an unconditional basis. 
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Since it has been established that there exist spaces in which all bases 
are conditional, it is natural to ask "Do there exist infinite dimensional 
Banach spaces in which all bases are unconditional?" In a beautiful 
paper, A. Pelczynski and I. Singer [93] show 

THEOREM 6.8. In every infinite dimensional Banach space with a basis 
there exist nonequivalent bases. (Bases {xt} and {yt} are equivalent iff 
{{ai}: YJ°= I aixi converges} = {{aj : JjL 1 <W converges}.) 

Theorem 6.8 is a main lemma for the following outstanding result: 

THEOREM 6.9. Every separable infinite dimensional Banach space with a 
basis has a conditional basis. 

In order to prove the above two theorems, the notions of symmetric 
and subsymmetric bases enter in a natural and fundamental way. 

A basis {xn} for a space E is symmetric iff* for each permutation T of co 
the sequence {xt(n)} is a basis for E equivalent to {xn}. 

A basis {xn} for a space E is subsymmetric iff it is an unconditional 
basis and is equivalent to each of its subsequences {xn.}. 

It is known that a symmetric basis for a Banach space is subsymmetric 
and Garling [37] has given an example of a Banach space with a sub-
symmetric basis which is not symmetric. 

A brief sketch of the proof of the Pelczynski-Singer theorem on the 
existence of conditional bases may be illuminating. Suppose that E is an 
infinite dimensional Banach space such that all normalized bases {xj 
for E are equivalent. Let {xn} be a normalized basis for £, i.e., {xn} is a 
basis such that ||xj| = l,n = 1,2,... . If {sn} is an arbitrary sequence 
with sn = ±l,n = 1,2,..., it follows that {snxn} is a normalized basis 
of E. If all normalized bases of E are equivalent, it follows that £ £ ! atXi 
converges if and only if Yf= i ^ixi converges for arbitrary {sn}, s„ = ±1 , 
Thus {xn} is an unconditional normalized basis. Hence, for each permuta­
tion T of co, {xT(„)} is a normalized basis which, by assumption, must be 
equivalent to {xn}. Thus {xn} is a symmetric basis. Using notions of 
generalized Haar system, generalized Rademacher system, and gener­
alized Khinchin inequality plus some facts about block basic sequences, 
it is shown that if all normalized bases are equivalent, then E is isomorphic 
to I2. But {xn} is an unconditional basis for E and I2 has been shown by 
Babenko [4] to have a conditional normalized basis. Since E cannot 
have equivalent bases one of which is unconditional, the other conditional, 
we must conclude that E admits two nonequivalent normalized bases. 
This fact together with more use of symmetric and subsymmetric bases 
leads to the "construction" of a conditional basis for E. 

I. Singer [112, p. 587] asked "In a Banach space E with a symmetric 
basis are all symmetric bases equivalent?" Lindenstrauss and Tzafriri 
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[69] have recently constructed a reflexive Orlicz space having at least two 
nonequivalent symmetric bases. 

A special case of the basis problem which should be more tractable 
than the general question but nevertheless remains open is: Does every 
separable uniformly convex space have a basis? 

Although not much work has been done on it, the basis problem for 
finite dimensional spaces is important. Given a basis xu x2,..., xn in a 
Banach space of dimension n, define the basis constant of xu..., xn to 
be the smallest K such that for all scalars a1,...,an and 1 ̂  j < n, 
\\YJ=iaixi\\ ^ K\\YJ=I

 aixi\\- The basis problem for finite dimensional 
spaces is: Does there exist a K < oo so that every finite dimensional 
Banach space has a basis with constant no greater than Kl 

Of course, the above question is open for infinite dimensional Banach 
spaces as well. In this connection P. Enflo [31] has shown: There exists 
an infinite dimensional Banach space E and a number X > 1 such that 
if E has a basis, then any basis for E has basis constant greater than L 

Similarly one can define the unconditional basis constant of a basis 
for a finite dimensional space. Does there exist a K < oo such that every 
finite dimensional space has a basis with an unconditional basis constant 
no greater than K? The answer is very likely no. Gar ling and Gordon 
[38] have shown that if the word "unconditional" is replaced by "sym­
metric" the answer to the question is indeed no. 

7. Block basic sequences. Let {x„} be a basis for a Banach space E, 
let {mn} be an increasing sequence of positive integers, m0 = 0, and let 
yn = Zr=mn_! +1 a(xh j ; „ ^ 0 ( n = l ,2 , . . . ) . Then {yn} is a basic sequence 
[112, p. 66]. A sequence {yn} cz E constructed in the above manner from 
a basis {xn} is said to be a block basic sequence with respect to the basis 
{xn}. Block basic sequences were used by James [45] and by Bessaga and 
Pelczynski [9] who gave them their name. 

The notion of a block basic sequence with respect to a basis is central 
in much recent work in basis theory. The following are some results 
based on this notion. 

THEOREM 7 .1 (ZIPPIN[119] ) . The unit vector bases of c0 and lp, 1 S P 
< oo, are the only perfectly homogeneous bases for Banach spaces, i.e., 
bases which are equivalent to each of their normalized block bases. 

THEOREM 7.2 (LINDENSTRAUSS-ZIPPIN [70]). The only Banach spaces 
which have, up to equivalence, unique, unconditional, normalized bases are 
c0,1

1, and I2. 

The fact that I2 has a unique normalized unconditional basis is classical 
going back to Köthe-Toeplitz [62] in 1934 and E. Lorch [71] in 1939. 
For c0 and I1 this was proved by Lindenstrauss and Pelczynski [66] and 
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is an easy consequence of Grothendieck's inequality. The converse is 
based on block basis techniques and leans heavily on Theorem 7.1 above. 

COROLLARY 7.3 (PELCZYNSKI-SINGER [93]). If E is an infinite dimensional 
Banach space with a basis, then E admits nonequivalent bases. 

PROOF. Suppose all normalized bases for E are equivalent. Let {xn} 
be a normalized basis for E. If {sn} is an arbitrary sequence with sn = ± 1, 
n = 1,2,..., it follows that {enxn} is a normalized basis for E. Since all 
normalized bases for E are equivalent, it follows that Yf= I aixi converges 
iff Yf= ! efliXi converges for arbitrary {e„}, en = ± 1, n = 1,2,... . Thus 
{xn} is an unconditional normalized basis for E. From our assumption, 
we have that E is a space with a normalized unconditional basis and all 
normalized unconditional bases for E are equivalent. Thus E is isomorphic 
to c0, Z

1, or I2. Now the unit vector basis for each of these spaces is uncon­
ditional whereas it is classical that each of these spaces has a normalized 
conditional bases. Since these bases cannot be equivalent, we have arrived 
at a contradiction. 

THEOREM 7.4 (ZIPPIN [120]). Every block basic sequence of a basis for a 
Banach space E can be extended to a basis for E. 

The above result enabled Zippin to complete the by now classical results 
of James by showing that if a Banach space E has a normalized basis and 
every basis for E is shrinking (respectively boundedly complete) then E 
is reflexive. 

THEOREM 7.5 (PELCZYNSKI-SINGER [93]). Let {xn} be a normalized non-
symmetric unconditional basis for a Banach space E. Then there exists a 
block perturbation of a suitable permutation of {xn} which is a conditional 
basis for E. 

We now give an alternate proof [112, p. 620] of the Pelczynski-Singer 
theorem of the preceding section. 

THEOREM 7.6. Every infinite dimensional Banach space E with a basis has 
a conditional basis. 

PROOF. Suppose all normalized bases for E are unconditional. If there 
exists a normalized nonsymmetric unconditional basis for E then, by 
Theorem 7.5., E has a normalized conditional basis so we have a contra­
diction in this case. Suppose, on the other hand, that all normalized 
unconditional bases for E are symmetric. Let {xn} be a normalized, 
unconditional and hence symmetric basis for E. It may be shown [112, 
p. 619] that {xn} is equivalent to all of its normalized block basic se­
quences, i.e., {xn} is perfectly homogeneous and by Theorem 7.1, E is 
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isomorphic to c0 or lp, 1 ^ p < oo. Since these spaces have normalized 
conditional bases, we again have reached a contradiction. 

THEOREM 7.7 (LINDENSTRAUSS-TZAFRIRI [68]). If {xt} is a symmetric 
basis for a Banach space and every block basic sequence with respect to 
{xt} spans a complemented subspace of E then {xj is perfectly homogeneous. 

It follows from the above that the unconditional analog of Theorem 7.4 
fails badly unless E is c0 or /p, 1 ̂  p < oo. 

Usually a block basis with respect to a basis {xn} inherits the nice 
properties of {xn}. This observation led Lindenstrauss and Pelczynski 
[67] to define the notion of a reproducing basis (see [67] for definition) 
which, in a sense, is better (perhaps more precisely, not worse) than any 
other basis of the same space. Not every space with a basis has a repro­
ducing basis and, on the other hand, a reproducing basis need not be 
unique (up to equivalence). However, the notion of reproducing basis is 
useful. For example, it enabled Lindenstrauss and Pelczynski to give a 
simple proof of the existence of a reflexive space which does not have an 
unconditional basis. It is useful in handling "distorted norms" and will 
surely find many other applications in the future. Among the examples 
of reproducing bases are symmetric bases, the Haar basis in If [0,1], and 
every basis for C[0,1]. 

Lindenstrauss and Tzafriri [68] use results of basis theory in a critical 
way to present an affirmative solution to the question "If every closed 
subspace of a Banach space is complemented is the space a Hubert space?" 
They also give the simplest proof of the Pelczynski-Singer Theorem 7.6. 
Their proof depends upon Theorem 7.2 and block bases. 

8. Partial orderings determined by biorthogonal systems. In 1954 at the 
International Congress of Mathematicians at Amsterdam, R. E. Fullerton 
initiated the study of partial orderings determined by biorthogonal 
systems with his paper Geometric properties of a basis in a Banach space 
[34]. Some definitions are needed in order to discuss this development. 
Throughout this section E will denote a real Hausdorff topological vector 
space and {x^f} a biorthogonal system {xj c E, {}j} c E'. Three 
closely related wedges in E associated with \xhf) will be considered. 
They are 

Kc = <xsE:x = £ fiix)Xi and f{x) ^ 0,iea>>, 

K0 = < x e E : x is in the closure of the set of elements of the form 

£ atxi9ai ^ 0, neœ>, 

K = {xeE:fi(x)^0, ieœ}. 
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It is clear that K0 and K are closed and Kc a K0 a K and when {xh f) 
is a basis the three wedges are equal. Recall that for any wedge P in E 
a partial order ^p may be defined for E by x ^py if y — xeP. This 
partial ordering is antisymmetric when the wedge P is a cone, i.e., P n(—P) 
= {8}. The wedge K defined above is a cone iff {ƒ•} is total. A nonempty 
convex set B is called a base of a wedge P iff each nonzero element x of P 
has a unique representation of the form x = Xb, X > 0, b e B. Fullerton 
([34], [35]) observed that the cone K of a basis {xi9 f) has no interior 
points and does not admit a compact or even a weakly compact base. 

If the cone of a basis for an infinite dimensional space cannot have a 
weakly compact base, can it have a bounded base? It was recently shown 
by Singer, McArthur, and Levin [80] that every basis cone in an infinite 
dimensional Banach space has an unbounded base. On the other hand, 
if {xM, ƒ„} is a Schauder basis for a Banach space E with ||x„|| = l,neco, 
and K{Xn] is the cone of the basis, then it was shown [80] that K{Xn} has 
a bounded base iff the mapping T(]£ji ! atXi) = YJ°= ï aih k w e^ defined 
from K{Xn} onto K{ln] where {/„} is the unit vector basis of I1 and K{ln] is 
the cone of {/„}. Foia§, and Singer [112, p. 323] show that when Tis well 
defined it is necessarily bicontinuous. From the foregoing results, the 
following theorem [80] is clear. 

THEOREM 8.1. If {x„, ƒ„} is a basis for a Banach space E with \\xn\\ = 1, 
ne co, then {xn} is equivalent to the unit vector basis of I1 iff K{Xn} has a 
bounded base and generates E (i.e., E = K — K). 

S. Saxon [98] has made a study of bases of cones of biorthogonal 
systems. He has shown, for example, that if K is the cone of a Schauder 
basis {xh ft} of a locally convex Hausdorff space E and K — Kis barrelled, 
then K has a bounded base iff E is, by identification, a barrelled subspace 
of I1 which contains {/J as a "normalization" of {x j . 

Although Fullerton's announcement in 1954 at the International 
Congress is the earliest reference we have found on orderings by bases, 
the first published paper is that of H. Schaefer in 1958 [99]. In this paper 
Schaefer develops the general theory of partially ordered locally convex 
spaces and he then makes application of the general theory to the special 
case of locally convex spaces which are ordered by biorthogonal systems. 

If P is a wedge in a vector space E, then a set A is order convex (with 
respect to P) iff A contains each order interval of P whose end points are 
in A. A wedge P in a topological vector space E is normal iff E has a local 
base of P-order convex neighborhoods of zero. A normal wedge in a 
Hausdorff space is necessarily a cone. A wedge P in E is a b-wedge iff 
each bounded set in £ is contained in the closure of a set of the form 
(B n P) — (B n P) where B is a bounded set. A wedge P is a strict fe-wedge 
iff each bounded set is contained in a set of the form (B n P) — (B n P) 
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where B is bounded. Following Singer [112, p. 24] we say that a biorthog-
onal system {x„, ƒ„} for E is E-complete iff the set of finite linear com­
binations YH= l aixt (neœ,ai>a29...,an arbitrary scalars) is dense in E. 

The following theorem gives a number of order theoretic characteriza­
tions for a biorthogonal system to be an unconditional basis. It includes 
results obtained by Schaefer [99, p. 139], Singer [107, p. 251], Gurevich 
[43], Ceitlin [15, Theorem 7] and Levin and McArthur [64]. 

THEOREM 8.2. Let {x„,/„} be an E-complete biorthogonal system, for a 
barrelled space E and let P denote any of the wedges KC,K0, or K. The 
following are equivalent: 

(i) {xw, ƒ„} is an unconditional basis for E. 
(ii) P is a normal b-cone. 

(iii) P is normal and P' is strongly normal. 
(iv) P' generates E' and [0, / ] is bounded for each f'e P'. 
Conditions (i) through (iv) are implied by each of the following conditions 

and all eight conditions are equivalent when E is sequentially complete. 
(v) P generates E and [0, x] is bounded for each xeP. 

(vi) P generates E and P' generates E'. 
(vii) P is normal and generating. 

(viii) P is a normal strict b-cone. 

The condition that {x„, ƒ„} be E-complete cannot in general be dropped 
from the above theorem [112, p. 478]. 

In his paper of 1962 Fullerton [35] proved that for a sequentially 
complete locally convex space E ordered by the cone of an unconditional 
basis each order interval is homeomorphic to a countable Hilbert cube. 
Thus the order intervals are compact and metrizable. Implicit in his 
paper is the result 

PROPOSITION 8.3. A biorthogonal system {*„,ƒ„} with {ƒ,} total in a 
sequentially complete locally convex space E is an unconditional basis for 
E iff its cone K is generating and the order intervals determined by K are 
compact. 

Nguen Van Khue [59] showed 

PROPOSITION 8.4. A biorthogonal system {xn,fn} with {ƒ„} total in a 
Banach space E is an unconditional basis for E iff its cone K is generating 
and each of the order intervals [0, x], x £ X, is weakly compact in a certain 
auxiliary topology. 

The next theorem, due to the author [78], includes Proposition 8.3. 
A wedge P in a topological vector space E is regular iff each monotone 
nondecreasing net in P which is majorized by an element of P converges. 
If the above condition is satisfied by sequences, P is sequentially regular. 
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THEOREM 8.5. Let E be a locally convex Hausdorff space and {xn, ƒ„} a 
biorthogonal system in E with {ƒ„} total and let E be partially ordered by 
the cone K. Then the following are equivalent: 

(i) For each xeK and each bounded sequence {bt} of nonnegative 
real numbers the series Y,?= i bifi(x)xi converges. 

(ii) [0, x] is compact for each xeK. 
(iii) [0, x] is weakly compact for each xeK. 
(iv) K is weakly regular. 
(v) K is sequentially weakly regular. 

(vi) K is regular. 
(vii) K is sequentially regular. 
(viii) [0, x] is a(E, E')sequentially complete and bounded for each xeK. 
Moreover, if E is reflexive each of the above is equivalent to 

(ix) [0, x] is bounded for each xeK. 

The next two corollaries were proved by Gurevich [43] for Banach 
spaces. 

COROLLARY 8.6. A biorthogonal system {xn,fn} with {ƒ„} total in a 
sequentially complete locally convex space E is an unconditional basis if and 
only if its cone K is regular and generating. 

COROLLARY 8.7. A biorthogonal system {xn, ƒ„} in a reflexive space E is 
an unconditional basis for E iff its wedge K is normal and generating. 

PROOF. Suppose that {xn, ƒ„} is an unconditional basis for E. Since E 
is reflexive, E is barrelled so the cone K is normal [78, Lemma 7]. Also 
since E is reflexive, E is sequentially complete so given xeEXstx = y — z 
where y is the sum of the subseries of Yf= x fi(x)xt obtained by using the 
terms with f{x) ^ 0 and — z is the sum of the remaining terms. Conversely, 
if the wedge K is normal, then K must be a cone and hence {ƒ;} is total. 
Also K is closed so K being closed and normal its order intervals are 
closed and bounded and since E is reflexive, the order intervals are 
a(E, E')-compact. From the equivalence of (i) and (iii) of Theorem 8.8 
and the assumption that K generates E it follows that {xn,fn} is an un­
conditional basis for E. 

In the next theorem it is assumed that the biothogonal system con­
verges on its cone K (i.e., Kc = K) but not necessarily on the whole space. 
Although the theorem was originally stated and proved for Banach 
spaces [80] it is true for Fréchet spaces by virtually the same proof. The 
assumptions of the next theorem are satisfied by conditional as well as 
unconditional bases. For example, let {xM, ƒ„} denote Schauder's basis for 
C[0,1], This basis is conditional since all bases for C[0,1] are conditional. 
Also Kc = K since it is a basis. Furthermore, K is normal being a subset 



898 C. W. McARTHUR [November 

of the natural cone of positive elements of C[0,1] which is well known 
to be normal. 

THEOREM 8.8. Let E be a Fréchet space and let {xn9 ƒ„} be a biorthogonal 
system in E such that {ƒ„} is total and Kc = K. Then the following are 
equivalent : 

(i) For every xeK, ]T-11 /j(x)xf converges unconditionally. 
(ii) For every XE KJe E\tr=i\fMf(xù\ < + oo. 
(iii) K is normal. 
(iv) [0, x] is bounded for each xeK. 
(v) For every xeK, [0,x] is linearly homeomorphic to a countable 

Hubert cube. Moreover, if (i) holds K is minihedral. 

The above results show that the properties of regularity and normality 
of cones are related. In fact, in a Fréchet space every regular cone is 
normal. Moreover, it is known that every closed normal cone in a weakly 
sequentially complete locally convex space is regular. Other results in 
this direction are the following two theorems [79] : 

THEOREM 8.9. If E is a Fréchet space, the following are equivalent: 
(i) Each closed normal cone in E is regular. 
(ii) E has no subspace isomorphic to (c0). 
(iii) Each closed subspace of E with an unconditional basis is weakly 

sequentially complete. 
(iv) Each unconditionally basic sequence in E is boundedly complete. 

THEOREM 8.10. Let E be a Banach space whose dual space E' with the 
strong topology is separable. Then with respect to the strong topology each 
closed normal cone in E' is regular. 

COROLLARY 8.11. Let E be the conjugate of a Banach space and assume 
that E is strongly separable. If {xn, ƒ„} is a biorthogonal system in E and 
K is normal, then the series Yf= i fi(x)xt ïs unconditionally convergent to x 
for each xeK. 

PROOF. By Theorem 8.10 K is regular and since 0 ^ £"= ! fiix)xt 

S L"= I ffc)xi ^ *, for x e K and n = 1,2,..., it follows that £ £ x ffccpct 
converges. When K is normal {fk} is total so the series must converge to 
x. The convergence is unconditional since applying the same argument as 
above to each subseries we see each subseries of Yf= i ƒ*(*)** a l s o con~ 
verges. 

It is easy to verify that if {*„,ƒ„} is an unconditional Schauder basis 
for a real sequentially complete locally convex space £, then E with the 
partial ordering furnished by K is a vector lattice. Furthermore, for each 
x,yeE, 
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00 

max(x,j;) = £ max(/,(x), ./Mx, 
i = l 

and 
00 

min(x,.y) = £ m i n ^ x ) , / ^ ) ^ 
i=l 

and 

i = i 

I. Singer [112, pp. 559, 560] showed that if E is a Banach space with an 
unconditional basis {xn, ƒ„} then E ordered by K may be renormed with 
an equivalent norm |jx|| (xe£) having the property that |x| ^ \y\ implies 
IMI ^ \\y\\ for x,yeE, i.e., £ is a Banach lattice. Ceitlin [15] has shown 
that if £ is sequentially complete and bornological (hence barrelled as 
well) and E is ordered by the cone K of an unconditional Schauder basis, 
then £ is a locally convex lattice with the ordering determined by K9 i.e. 
the lattice operations are continuous. J. Hofler [44] has taken this a step 
further with the following theorem. 

THEOREM 8.12. Let E be a sequentially complete barrelled space ordered 
by the cone K of an unconditional Schauder basis {x„, ƒ„}. Then 

(i) E is a locally convex lattice; 
(ii) the only complete barrelled space E ordered by the cone of an un­

conditional Schauder basis for which the lattice operations are <J(E, £')-
continuous is the space(s) of all real sequences with the product topology. 

COROLLARY 8.13. An arbitrary reflexive space ordered by the cone of an 
unconditional Schauder basis is a vector lattice. 

PROOF. A reflexive space is sequentially complete and barrelled. 
S. Smith [113] has shown that if two biorthogonal systems have the 

same cone, they differ at most by rearrangement and positive scalar 
multiplication. Moreover, if £ is a Hausdorff topological vector space 
ordered by the cone K of an unconditional Schauder basis {xn, fn}ne(0 

and if {ya9 K}^sA is a biorthogonal system having the same cone K then 
o = A and {yn, hn} is an unconditional basis for £. 

Marti and Sherbert [74] have recently proved the following weak 
basis theorem which involves an order topology. Let £ be a Fréchet space 
ordered by a generating cone. Let o(£, £') denote the topology of uniform 
convergence on order bounded subsets of £'. Then each weak o(£, E') 
basis for £ is an o(£, £') Schauder basis for £. 



900 C. W. McARTHUR [November 

9. Bases in nuclear Fréchet spaces. In the class of all infinite dimen­
sional Banach spaces the Hubert spaces seem to be the natural generaliza­
tion of the finite dimensional normed linear spaces. However, in the class 
of all infinite dimensional Fréchet spaces, the nuclear spaces of A. 
Grothendieck [40] are the natural generalizations and nearest relatives 
of the finite dimensional spaces. 

Grothendieck's original definition of nuclear spaces involves tensor 
products. A more elementary equivalent definition is the following. A 
sequence {xn} in a Fréchet space is rapidly decreasing iff {nkxn}™=1 is 
bounded for each positive integer k. A set N in a Fréchet space E is a 
nuclear set iff N is contained in the closed, convex, circled hull of some 
rapidly decreasing sequence. Finally, a Fréchet space is nuclear iff every 
bounded subset of £ is a nuclear set. Grothendieck [40] has shown that 
a Fréchet space E is nuclear iff every unconditionally convergent series 
in E is absolutely convergent. 

The above characterization together with the fact that only in finite 
dimensional Banach spaces is unconditional convergence of series 
equivalent to absolute convergence implies that the only nuclear Banach 
spaces are the finite dimensional ones. Nuclear Fréchet spaces are 
necessarily separable. It is an open question as to whether or not every 
nuclear Fréchet space has a basis, i.e., the basis problem for nuclear 
Fréchet spaces is unsolved. 

A major result in the theory of bases in nuclear spaces is due to A. S. 
Dynin and B. S. Mityagin [30] : 

THEOREM 9.1. Each basis {xn, ƒ„} of a nuclear Fréchet space E is absolute, 
i.e., ifxeE andp(x) is a continuous seminorm on E, then 

00 

£ P(fn(x)xn)< +00. 
n = l 

The above theorem allows one to represent each nuclear Fréchet space 
with a basis as a Kö the sequence space, which we now define. If T is a set 
of positive sequences a = {an} (i.e., an ^ 0, n = 1,2,... ) satisfying 

(i) for each n G œ there is an a e F such that an # 0, and 
(ii) for a1,..., an e T there is an a e T and M > 0 such that al

n ^ Man 

for all i G co and n e co, 
then let À(T) be the set of sequences of scalars x = {xn} such that pa(x) 
— Z?= i an\xn\ < + oo for all a e F. The vector space À(T) with the topology 
generated by the seminorms {pa:aeT} is called a K'ôthe sequence space. 

It is a consequence of the Dynin-Mityagin theorem above that a nuclear 
Fréchet space E with a basis {xn} is isomorphic to the Köthe sequence 
space /l(r), T = {|x„|m}, where {| • | m } ^ = 1 is an increasing family of semi-
norms generating the topology of E. 
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A converse of the Dynin-Mityagin theorem is valid. W. Wojtynski 
[117] has shown 

THEOREM 9.2. If E is a Fréchet space with a basis and all bases for E are 
absolute, then E is nuclear. 

It has been conjectured that every Fréchet space in which all bases are 
unconditional is nuclear. In support of this conjecture is the affirmative 
result of Wojtynski for the special class of "rigged Hilbert spaces." 

We have seen that the requirement that all normalized unconditional 
bases in a space be equivalent is very strong and that for Banach spaces, 
it happens only for c0, I1 and l2. M. M. Dragilev [26] introduced the 
notion of quasi-equivalence of bases. Two bases {xn} and {yn} are quasi-
equivalent iff there are permutations {pn} and {qn} of the positive integers 
and nonzero numbers an and bn such that {anxPn} and {bnyqn} are equi­
valent. If {xn} and {yn} are quasi-equivalent bases in Fréchet spaces X 
and Y respectively, then X and Y are isomorphic. Moreover, if X and Y 
are also nuclear then the corresponding Köthe sequence spaces /l(|xn|w), 
(̂Wm) a r e identical. 

Dragilev [27] has shown that for a large class of nuclear Fréchet 
spaces with a basis all bases in the space are quasi-equivalent. A topo­
logical vector space £ is a Dragilev-space if E has a basis and all bases 
for E are quasi-equivalent.6 Some outstanding problems regarding these 
spaces are the following: 

(1) Is there a nuclear Fréchet space with a basis which is not a Dragilev 
space? 

(2) If E and F are Dragilev nuclear Fréchet spaces, are the cartesian 
and tensor products of E and F Dragilev spaces? 

(3) Is there a Dragilev space which is an infinite dimensional Banach 
space? 

A noteworthy achievement on the existence of bases is due to Y. 
Komura and S. Koshi [61]. 

THEOREM 9.3. Every nuclear Fréchet vector lattice has a basis. 

Y. and T. Komura [60] have exhibited a universal space U for the 
class of nuclear Fréchet spaces, i.e., every nuclear Fréchet space E is 
isomorphic to a closed subspace of U. Indeed, U can be taken to be the 
product of countably many copies of À(nm). Mityagin [83] has shown that 
U is isomorphic to C°°(— oo, oo), substantiating the conjecture of Grothen-
dieck that this space is universal for nuclear Fréchet spaces. Now k(nm) 
is a nuclear vector lattice (coordinatewise ordering) hence, so is U, and 

6 An excellent survey of results on this topic was made by Mityagin [85] who also includes 
some new results -mostly Russian. 
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so every nuclear Fréchet space is a subspace of a nuclear vector lattice. 
Can every nuclear Fréchet space be embedded as a closed sublattice of 17? 
This, of course, would settle the basis problem for nuclear Fréchet spaces. 

Finally, we mention two recent results of A. Lazar and J. R Retherford 
[63]. The notion of a Choquet simplex is needed. Let S be a convex subset 
of a Fréchet space E. Passing to E x R (R the scalar field) if necessary, we 
may suppose that S lies in a hyperplane of E which misses the origin. 
Under this latter assumption, we say that S is a Choquet simplex if the 
cone C = {as:a ^ 0,5 6 5} generated by S induces a lattice ordering 
in C — C. A Choquet simplex S will be called a YL-simplex iff C (the 
closure of C) is a cone making C — C a topological vector lattice. 

Lazar and Retherford have shown [63] 

THEOREM 9.4. A Fréchet space E with a basis is nuclear iff every bounded 
set in E is contained in a bounded Choquet simplex. 

It is not known whether the assumption of a basis is necessary in the 
above theorem. 

Concerning the basis problem for nuclear Fréchet spaces Lazar and 
Retherford [63] have shown the following equivalences. 

THEOREM 9.5. If E is a nuclear Fréchet space, the following are equivalent: 
(i) E has a Schauder basis. 
(ii) Each bounded subset of E is contained in a translate of a bounded 

VL-simplex. 
(iii) There is a fundamental bounded set containing 0 and contained in a 

translate of a bounded VL-simplex. 

10. Universal bases. Let ̂  be a class of bases. A basis {xn} for a Banach 
space is said to be universal for 0S iff for any basis {yk} in aft there exists a 
subsequence {x„J such that {yk} and {xnk} are equivalent, i.e., there 
exists an isomorphic embedding Tfrom [yj into [x j such that Tyk = xnk. 
If, moreover, the subsequence {xnk} has the property ££Li tnxn converges 
implies Xfc°=î ik

xnk converges, then {xn} is said to be complementably 
universal. 

The above notions are due to Pelczynski [90] who proved the existence 
theorem: 

THEOREM 10.1. The family M of all normalized bases contains a comple­
mentably universal element. 

The family £ft of unconditional bases contains a complementably universal 
element. 

Zippin [121] gives the following negative result on universal bases. 

THEOREM 10.2. Letffi be one of the following classes of normalized bases: 
(a) the class of shrinking bases, 
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(b) the class of all boundedly complete bases, 
(c) the class of all Hubert bases, 
(d) the class of all Bessel bases, 
(e) the class of all bases in Hubert space. 

Then there is no member in âiï which is universal for &. 

Remark (a) above was proved by Pelczynski [90]. Remark (b) was 
proved independently by Zippin [121] and Wojtaszczyk [118]. Remarks 
(c) and (d) are due to Zippin [121] and (e) has recently been shown by 
N. I. Gurarii[42]. 

From the above theorem and the fact that a separable Banach space 
has the bounded approximation property iff it is isomorphic to a com­
plemented subspace of a Banach space with a basis comes the following 
corollary. 

COROLLARY 10.3. There is a separable Banach space E with a comple­
mentary universal basis such that for any separable Banach space X with 
the bounded approximation property, there are bounded linear operators 
T:X -• E and P:E -• X such that PT = lx. In other words, any separable 
Banach space with the bounded approximation property is isomorphic to 
a complemented subspace of E. The space E is unique up to isomorphism. 

The above result is due to Johnson, Rosenthal, and Zippin and inde­
pendently to Pelczynski ([51], [91]). Weaker results had been proven 
earlier by Pelczynski, Kadec, and Pelczynski and Wojtaszczyk ([90], 
[54], [94]). 

Does there exist a separable Banach space E such that every separable 
Banach space (or even every separable Banach space with the approxima­
tion property) is isomorphic to a complemented subspace of El 

The literature on bases contains two recent books. The first of these 
appeared in 1969 and was written by J. T. Marti [73]. It is a small book 
and is, as its title states, an introduction to the theory of bases. It is a good 
introduction going far beyond the one in Day's book [21]. Ivan Singer's 
book on basis theory [112] appeared in 1970. It is the first volume of a 
planned two volume systematic exposition of basis theory at the Banach 
space level. Singer's book is especially valuable as it is enhanced by many 
examples, and outstanding problems, and by copious historical notes. 
In 1963 and 1964 Ivan Singer published three papers (in Romanian) 
which constitute a skeleton for his two volume exposition of basis theory. 
These papers are not only of historical value but also are still a stimulating 
source of problems. 

The space of holomorphic functions on the open unit disc with the 
topology of uniform convergence on compact sets has the powers of the 
complex variable z as a basis. The theory of bases in Banach spaces has 
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nothing to say about this familiar, simple, important basis because the 
above space is a nuclear Fréchet space which is not a Banach space. 
A systematic development of basis theory at least at the generality of 
Fréchet spaces is needed. 
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