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Let C be the complex plane, Ce the extended plane, A(a,r) the open
disk of radius r centered at g, R a Riemann surface and HP(R) Hardy
class H? of R (cf. [5, pp. 9-12]). A now classical theorem of Beurling states
that the closed subspaces of H2(A(0, 1)) invariant under multiplication
by z are exactly the subspaces V of the form V = I+ H*(A(0, 1)), where I
is an inner function determined up to multiplication by a constant of
modulus 1 by V[1]. Analogous theorems hold for H?(R), where R is the
interior of a compact bordered Riemann surface and 1 £ p £ 0. (If
p = 0, the proper topology for ¥ to be closed in is either the § or bounded
weak-star topology of Buck [2], or else the weak-star topology.) (Cf.
[3], [4], [10], [13]) We have generalized these theorems to HP(R),
where R is a certain type of infinitely connected plane domain.

Before stating our generalization, we must make several definitions.
A locally analytic modulus, or lam. is a real valued function g on R
such that for each simply connected open subset U of R, there exists f
analytic on U such that g = |f| The Lam. g is inner if logg = G + 5,
where G is a sum of Green’s functions and S is a singular harmonic function
in the sense of Parreau ([8], cf. also [5, p. 7]). If R = A(0, 1), an analytic
function I is inner in the usual sense [6, pp. 61-68] if and only if the
la.m. || is inner.

R is a Blaschke region in case R = C and R is of the form Ce ~
U{4():0 =i < o} (or, Ce ~\ {A(i):0 £ i < n}) where the A() are
pairwise disjoint continua such that Ce ~ A(j) is connected for each i.
In addition, there must exist an integer n such that the A(i) cluster only
on {J {A(1):0 < i <n}, and a sequence a(i)e A(), i = n + 1, such that
Y(G(a(i),z):n + 1 £ i < o) < oo. Here G(a,2) is the Green’s function
for Ce ~\J {4():0 < i < n}. Voichick first studied this class of plane
regions [13]. We call them Blaschke regions because the prototype of
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such a region is a region R of the form R = A(0, 1) ~ U {A@):1 i< o};
where the A(i)’s are as above for 1 < i < oo, cluster only on JA(0, 1),
and such that there exists a convergent Blaschke product with zeroes
a(i)e AG), 1 i< .

Let R = Ce ~U {A(}):0 =i < o} be a Blaschke region. Since each
Ce ~ A(j) is simply connected and each A(j) is a continuum, we may map
each Ce ~ A(j) into A(0,1) via the Riemann mapping function y(i).
For n + 1 <i< oo, let T()) = 8A(0, 1) x {A()}, and for 0 < i< n, let
T()) = (A0, 1) ~ E(i)) x {A()}, where E() is the set of cluster points of
the Yy(i)A(), j#i Lee T =U {T'():0=<i< oo}. We endow Ru I with
the appropriate topology and conformal structure, which agrees on R
with the ones inherited from C. R U I is then a bordered Riemann surface.
I is called the canonical border of R. We now may state the main theorem.

THEOREM A. Let R be a Blaschke region, I' the canonical border of R,
and suppose the ideal boundary of R T has harmonic measure 0. Then
(i) Each B closed ideal of H*(R) is of the form

{fe H®R):|f|/I is bounded}

for a unique bounded inner l.a.m. 1. Conversely, each set of the above form
is a B closed ideal.

(i) Let 1 < p < . Each norm closed H*(R) submodule of H"(R) is of
the form

{f € H(R): (|f|/T)" has a harmonic majorant}

for a unique bounded inner lLa.m. 1. Conversely, each set of the above form
is a norm closed H*®(R) submodule.

Our proof of Theorem A is modeled on Rudin’s proof of the Beurling-
Rudin characterization of the closed ideals of the algebra of functions
analytic on A(0, 1) and continuous on CI1(A(0, 1)) (cf. [6, pp. 85-87]).
In many respects our proof also parallels Voichick’s proof of the analogue
of Theorem A(ii) for compact bordered Riemann surfaces [13].

Our proof utilizes three results of independent interest. The first of
these, Theorem B, was obtained independently by H. Widom, who gave
a proof more elegant than ours [15] Throughout, U = dU + i*dU,
R is a Blaschke region, b a fixed point in R, G(a, z) the Green’s function
for R, and & the set of zeroes of 5G(b, z) counting multiplicity.

THEOREM B. Y (G(z,w):ze &) < o for each weR ~ Z.

In Theorems C and D, R u T satisfies the hypotheses of Theorem A.
Further, g(w) = exp(— Y(G(z, w):ze Z)). The function g is, of course,
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an inner bounded la.m. Finally, if f is an extended complex valued
function defined on R, we shall denote the nontangential (sectoral) limit
of f at p by f*(p) for each p eI" where the limit is defined.

TueOREM C. Let f be meromorphic on R and suppose | f'|g has a harmonic
majorant. Then f* exists a.e. on T and is integrable with respect to harmonic
measure. Further,

1
f) = - — f S*(2)6G(b, 2),

r
where I" is oriented positively with respect to R.

THEOREM D. Let u be integrable on I" with respect to harmonic measure.
Suppose

f h*(z) u(z) 6G(b,z) = 0
r

for each function h, meromorphic on R, such that g|h| is bounded and
h(b) = 0. Then there exists a function f € H'(R) such that f =uaeonTl
with respect to harmonic measure.

It is readily verified that Theorem C is a form of the Cauchy Integral
Formula (f(z) 6G(b, z) has residue —1 at z = b) and Theorem D is a
version of Read’s theorem [97]. (We are indebted to J. A. Jenkins for the
observation that Read’s theorem for CI(A(0,1)) is a consequence of
Morera’s theorem. Our proof of Theorem D is an extension of his obser-
vation.) The reader should also note that harmonic measure on I" at b
is simply given by —(1/27i) 6G(b, z).

We also have a counterexample, based on Rudin type bubble regions
[12], showing that Theorem A(i) does not hold for all infinitely connected
plane regions R, even if R admits enough bounded analytic functions to
separate points. C. W. Kennel has recently generalized our example
considerably [7].

Finally, we have a counterexample showing that not every closed
submodule of H?(R) is of the form i - H?(R) for some y € H*(R) even if
R is a Blaschke region satisfying the hypotheses of Theorem A. This
construction gives an example of a function Y € H®(R) which has no
interior-exterior factorization in the sense of Rubel-Shields ([10], [11]).

Details will appear elsewhere.
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