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ABSTRACT. The Boltzmann equation is considered on the appropriate 
Hubert space. The nonlinear problem is looked at as a perturbation 
of its linearized version. Thus, one deals with a pair of contractive 
semigroups, and a "wave operator" for this pair is studied. We find 
a subspace of finite codimension where the corresponding limit 
exists. 

The Boltzmann equation for a monoatomic gas is 

df/dt + Vl-gridf = Bf 

(1) =^ im)m)-f{v2)f(vJ\ 

' | vi — v21 J(K - v2|> 0)sin 0 dO d<t> dv2. 

Here ƒ (£, r, v) is the velocity distribution' function at time t at the point r, 
and the star on vx and v2 denotes the effect of a binary collision. 
I(\vi — v2|,ö) is the differential scattering cross section corresponding to 
the turning of the relative velocity vx — v2 in an interaction. 

We are concerned with the spatially homogeneous case and moreover 
we assume that we are dealing with a cut-off interaction, so that 

(2) f/(v,0)sin0d0# < oo. 

Under these restrictions the initial value problem for the Boltzmann 
equation has been much studied 

There is one molelular interaction, proposed by Maxwell, which sim­
plifies the mathematics in (1) a bit One proposes a central potential 
inversely proportional to i* and one finds that v/(v, 0) is a function of 
0 alone, with a pole at 0 = 0. This pole is removed by the cut-off assump­
tion (2). Thus the equation can be written as 
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(3) df/Ôt=f*f-f 

with 

(4) (ƒ */X'i) = j f / W ) / W ) k i - "2|/(|"i - v2\9e)sin e de d(i>dv2. 

In (3) we are taking the total cross section to be unity. 
Define g(v) = (27i)~3/2exp - v2/2 Then (3) can be considered as an 

initial value problem on the submanifold of L2^"1) given by those 
functions which are positive and satisfy the five scalar conditions 

(5) \f(v) dv = 1, f ƒ (v)v dv = 0, f(v)v2 dv = 1. 

It turns out that (3) is well posed in a sufficiently small ball centered 
around g. This result is well known and not particularly hard to prove. 
One also proves that g is an attractive center for the flow given by (3), 
so that any initial datum in the vicinity of g approaches it as time increases. 

Our aim is to compare the actual flow (3), subject to the conditions (5), 
with its linearized version around g. One writes ƒ' = g + ft, notices that 
g *g = g and then drops from 

ft = ƒ * ƒ — ƒ = (g*h + h*g— ft) + h*h 

the nonlinear term in ft, obtaining 

(6) ft = Ah = g*h + h*g — ft. 

The treatment of (6) is greatly simplified by the fact that A is a negative 
selfadjoint operator having a purely discrete spectrum. See [1] and [2]. 
Let Qt and Tt denote the semigroups relating data at time 0 to its evolution 
at time t for equations (3) and (6) respectively.2 

We are interested in proving the existence of a nonlinear change of 
coordinates, around g, that would convert the nonlinear problem (3) 
into the linear one given by (6). Explicitly, we want to find a very smooth 
mapping \j/ from a neighborhood of g into itselfj that leaves g invariant, 
coincides with the identity up to first order, and satisfies 

(7) Qr = r'Td 

for all positive times. 
One shows easily that such a ^ is readily available if 

(8) lim T.tQt 

2 Actually we want Tt(g + h)= g + ht where ht is the evolution of h according to (6). 
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exists and is invertible close to g. This is a common procedure in scattering 
theory where one deals with two unitary groups. The author found that 
the trick works for the Boltzmann equation too. Here one is dealing 
with contractive semigroups and one of them is nonlinear. The main 
differences with the unitary case are that (a) even the finite-dimensional 
case is interesting, (b) limits can exist only in one sense and not as t -» ±00. 

Limits like that in (8) are called wave operators in scattering theory. 
A mapping like the \// in (7) was first considered by Poincaré. See [3] 
and its references. 

In [3] a complete study of a simpler model of (3), introduced by Kac [4], 
is done and the existence of the limit (8) is established 

In the 3-dimensional case the situation is much more involved and 
the result is changed a bit. Although a if/ satisfying (7) can still be found, 
the limit in (8) does not exist for a general initial data Remarkably enough 
one can exhibit a large subspace where the limit does exist. It turns out 
to be a subspace of codimension 3, in the appropriate Hubert space, 
given in a rather simple way. This is the content of the following : 

THEOREM. If fel}{g~1\ is close enough to g, and satisfies not only (5) 
but also the three extra scalar requirements 

(9) \f(v)vv2dv = 0, 

i.e. the "heat flow vector" vanishes, then 

lim T_tQtf exists. 
t->+oo 

Condition (9) is both sufficient and necessary for the existence of the 
limit. The necessity could already have been established by Maxwell 
himself. Indeed, using the notation in [1] or [2], the eigenvalues of A are 

Jo 
sin 0 F(9)d0 cos^r -PA cos-

2 V 2 

+ m 2 ' + , ^ p / s i n | ) - ( l + M o r ) T 

Set A2k = 2TT JO (sinfl)2k+1F(0)d0 and conclude that 

" 1 1 = = ~"2^2? ^22 = -""8^2 + T6^4-

Now condition (9) would be unnecessary only if one could prove the 
inequality 2Àtl < À22- This is equivalent to 2A2 < 3A4. Maxwell [5] 
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had already computed A2 and AA with such an accuracy that he could 
have ruled out the inequality above. 

The sufficiency of (9) is, of course, harder to establish. 
We cannot, unfortunately, give any physical explanation for the result 

above. It is not even clear that there should be any. Instead, the proof 
is based on a careful study of the spectral properties of the operator A 
in (6). The proof depends heavily on the use of the Talmi transformation [6] 
and the numerical computation of a large number of eigenvalues of A 
done by Alterman, Frankowski and Pekeris [7]. 

The transformation referred to above was introduced by Talmi in a 
study of the harmonic oscillator shell model of nuclear physics. The 
connection hinges on the fact that the eigenfunctions of A are those of 
the harmonic oscillator. Kumar [8] introduced the Talmi transformation 
in kinetic theory. 

The numerical computation of the eigenvalues of A- only the first 559! -
turns out to be very useful to supplement analytical facts in proving 
some crucial "eigenvalue inequalities". See [3] and [9]. 

A proof of the theorem as well as related results will be published 
elsewhere. 

I want to thank G. W. Ford for bringing the Talmi transformation to 
my attention. 
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