AN INVERSE PROBLEM FOR GAUSSIAN PROCESSES¹

BY F. ALBERTO GRÜNBAUM

Communicated by P. D. Lax, January 11, 1972

Let X(t) be a centered stationary Gaussian process (c.s.G.p.). Its statistics are completely determined by its correlation function

$$R(s) = E(X(t)X(t+s)).$$

This is a positive definite function and we assume it is continuous at the origin.

A problem often considered in the electrical engineering literature is that of determining the statistics of

$$Y(t) = X^2(t).$$

The best results, to our knowledge, consist of the computation of some few moments of higher order [1].

Two problems are considered in this note.

- 1. Does there exist a universal constant m such that the moments of order $\leq m$ of Y(t) are enough to determine its statistics? (Recall that m = 2 for a Gaussian process.)
 - 2. How much of the statistics of X(t) can you read off from those of Y(t)? The answers to 1 and 2 are embodied in the next two statements.

THEOREM I. Let m be an arbitrary positive integer. There exists a centered stationary Gaussian process X(t) such that the moments of order $\leq m$ of $Y(t) = X^2(t)$ do not suffice to determine Y's statistics.

THEOREM II. The statistics of $Y(t) = X^2(t)$ determine uniquely those of X(t).

The proof of this second result appears in [2]. Stationarity can be disposed of, but the Gaussian character of the process is essential. Finally the real line as a parameter space can be replaced by any arcwise connected space.

PROOF OF THEOREM I. A simple computation shows that knowing all the moments of order $\leq m$ of Y(t) is equivalent to knowing the expressions

(1)
$$\sum_{\pi} R(t_{\pi 1} - t_{\pi n}) R(t_{\pi 2} - t_{\pi 1}) \dots R(t_{\pi n} - t_{\pi (n-1)}), \qquad 2 \leq n \leq m.$$

AMS 1970 subject classifications. Primary 60G15; Secondary 42A88, 43A35, 62M10. Key words and phrases. Square of a Gaussian process, moments, statistics, uniqueness. ¹ The research reported in this paper was supported by the U.S. Atomic Energy Commission, Contract No. AT(30-1)-1480.

Here $t_1 ldots t_n$ are arbitrary real numbers, and the sum ranges over the group of all permutations π of n elements.

Consider now the function

$$f(x) = x^2(1 - \cos x)(1 + \varepsilon \cos kx), \qquad |\varepsilon| < 1, k \ge 2.$$

Its Fourier transform is the positive definite function

$$R(s) = \frac{1}{2}\varepsilon(1 - |s - k|) \quad \text{for } |s - k| \le 1,$$

$$= 1 - |s| \quad \text{for } |s| \le 1,$$

$$= \frac{1}{2}\varepsilon(1 - |s + k|) \quad \text{for } |s + k| \le 1,$$

$$= 0 \quad \text{otherwise.}$$

Take X(t) to be a c.s.G.p. with this correlation function. We claim that, by choosing k appropriately, we can conclude that the information contained in (1) is not enough to determine the sign of ϵ . Indeed, the only arrangements of t's that give a nonzero contribution to (1) are those for which all the differences $|t_{\pi i} - t_{\pi(i-1)}|$ are either smaller than 2 or else between k-1 and k+1. This plus the fact that

$$(t_{\pi 1}-t_{\pi n})+\cdots+(t_{\pi n}-t_{\pi(n-1)})=0$$

implies that for $k > 2m \ge 2n$ the number of terms in this sum which are close to k has to match the number of terms which are close to -k. But going to the corresponding term in (1) this means that ε enters with an even power and its sign is lost.

Briefly, for any given m we construct a c.s.G.p. X(t) such that the m-order statistics of $Y(t) = X^2(t)$ do not determine the correlation of X(t). The proof is now finished if one invokes Theorem II.

It is a pleasure to thank H. P. McKean who suggested a related problem.

REFERENCES

- 1. R. V. Deutsch, Nonlinear transformations of random processes, Prentice-Hall Internat. Series in Appl. Math., Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 26 #6006.

 2. F. Alberto Grünbaum, The square of a Gaussian process, Z. Wahrscheinlichkeits-
- 2. F. Alberto Grünbaum, *The square of a Gaussian process*, Z. Wahrscheinlichkeitstheorie (1972).

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012