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AN INVERSE PROBLEM FOR GAUSSIAN PROCESSES!
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Let X(t) be a centered stationary Gaussian process (c.s.G.p.). Its
statistics are completely determined by its correlation function

R(s) = E(X(®)X(t + s)).

This is a positive definite function and we assume it is continuous at the
origin.

A problem often considered in the electrical engineering literature is
that of determining the statistics of

Y(t) = X(¢).

The best results, to our knowledge, consist of the computation of some few
moments of higher order [1].

Two problems are considered in this note.

1. Does there exist a universal constant m such that the moments of
order < m of Y(t) are enough to determine its statistics? (Recall that
m = 2 for a Gaussian process.)

2. How much of the statistics of X(t) can you read off from those of Y(t)?

The answers to 1 and 2 are embodied in the next two statements.

THEOREM 1. Let m be an arbitrary positive integer. There exists a centered
stationary Gaussian process X(t) such that the moments of order < m of
Y(t) = X*(t) do not suffice to determine Y’s statistics.

THEOREM II. The statistics of Y(t) = X?(t) determine uniquely those of
X(2).

The proof of this second result appears in [2]. Stationarity can be dis-
posed of, but the Gaussian character of the process is essential. Finally the
real line as a parameter space can be replaced by any arcwise connected
space.

PRrROOF OF THEOREM 1. A simple computation shows that knowing all
the moments of order < m of Y(¢) is equivalent to knowing the expressions

(1) ZR(tnl - tﬂ:n)R(tnz - tnl) e R(tun - tn(n—l)), 2 é n é m.
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Heret, ...t,arearbitrary real numbers, and the sum ranges over the group
of all permutations 7 of n elements.
Consider now the function

f(x) = x*(1 — cosx)(1 + ecoskx), e <L k=2
Its Fourier transform is the positive definite function
Rs) = 4e(1 — |s — k|) for|s — k| <1,

=1—1 fors| < 1,
=%e(1 — s+ k) for|s+ k| =1,
=0 otherwise.

Take X(¢) to be a c.s.G.p. with this correlation function. We claim that,
by choosing k appropriately, we can conclude that the information
contained in (1) is not enough to determine the sign of ¢. Indeed, the only
arrangements of t’s that give a nonzero contribution to (1) are those for
which all the differences |t,; — t,;—,| are either smaller than 2 or else
between k — 1 and k + 1. This plus the fact that

(tnl - tun) + -+ (tnn - tu(u—l)) =0

implies that for k > 2m = 2n the number of terms in this sum which are
close to k has to match the number of terms which are close to —k.
But going to the corresponding term in (1) this means that ¢ enters with
an even power and its sign is lost.

Briefly, for any given m we construct a c.s.G.p. X(¢) such that the m-
order statistics of Y(t) = X?(t) do not determine the correlation of X(¢).
The proof is now finished if one invokes Theorem II.

It is a pleasure to thank H. P. McKean who suggested a related problem.

REFERENCES

1. R. V. Deutsch, Nonlinear transformations of random processes, Prentice-Hall Internat.
Series in Appl. Math., Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 26 # 6006.

2. F. Alberto Griinbaum, The square of a Gaussian process, Z. Wahrscheinlichkeits-
theorie (1972).

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK,
NEW YORK 10012



