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We give here a brief sketch of a different approach to the Atiyah-Bott 
type Lefschetz fixed point formula for Dolbeault complexes. Our method 
is based on an extension to the complex case of de Rham's integral formulas 
for Kronecker indices [7]. This approach yields results for general fixed 
point sets, and in particular we shall give here a formula for isolated 
degenerate fixed points. Details and related results will appear elsewhere. 

Following notations in [1], [2], [3], let X be a compact complex analytic 
manifold of complex dimension n, 

r(A*'*x):o -> r(A*'°) ^ H A * 1 ) - • • • ^ r(Ap>w) - o, 
0 ^ p ^ n, the pth Dolbeault complex, ƒ: X -> X a complex analytic 
mapping with isolated fixed points, and 

Tp« = A W * ) ® AW*)o/*:r(A*«) - r (A") 

the induced endomorphisms on the complex. In terms of Tp q we define, as 
in [3], 

graph{rp,JeF(A™[x](A™)') 

where (Ap'*)r denotes the geometric dual and F the space of distributions. 
It is then seen that 

graph {Tp}= f gmph{TPtq}eHW*®(Ap*y)-
q = 0 

Similarly define 

A p= £ graph{/M}eH'((A^7EIAO 
q = 0 

where IPtq:T((APtqy) -> T((AP'7) is the identity. Analogous to [3], [6], one 
deduces from Poincaré duality and Künneth formula that the Lefschetz 
number 

W O = I (~ i r t r ace{T* ,} 
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is given by 

(1) L ( / 0 = (*graph{rp},Sp) 

where the inner product is defined as usual by (a, /?) = ƒaA*/J. 
The product (*graph {Tp}, 5p) is determined at the intersection of sin­

gular supports of the two distributions, and may be computed locally. Let 
a local coordinate map be given, through which the fixed point is mapped 
to origin in C 2 \ the piece of singular support of Ap is mapped to a subset V 
of the diagonal, and that of graph {Tp} is mapped to a set U. Denote by 
graph {Tp}U9 (Ap)v the distributions transformed to C2n. Since in euclidean 
space (dô + Sd)G = 1 [7], and dö + bd = 2(d'ô' + ô'd') = 2{d"ô" + è"d") 
we can write 

(*graph {Tp}ü95pK) = 2{d'ô'*Ggraph {Tp}ü9ZpV) 

+ 2(*graph{rp}ü,^'GSpK) 

and the r.h.s. is given by integrals of smooth functions. The sum is invariant 
as we increase the support of V to the full diagonal A in C2w, and we find 
the second term vanishes while the first term becomes 

(2) 2 f f <5>cPcg(z,0 
J AC JdVz 

where g(z9 Ç) is the Green's form in C2w, and 

P: A ® A -• £ An~p>n-« <g) A*« 

is the projection determined by Ap. 
Suppose now the mapping is described locally by 

zn+i = fAzl9...9zù 1 ^ i£ n, 

and denote ht(z) = zt — ft. Let Ap(z) be holomorphic functions defined by 

Then (2) is evaluated to be 

(2ni) JdU 

Yjhjdhx A dzj A • • • A dz,-! A dz,- A dhj+l A • • • A d/îw A dzn 

In the case of a simple fixed point, a change of variable together with 
Bochner's integral formula [4] applied to (3) yields the formula (4.9) of [2]. 
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In the case of an isolated nonsimple fixed point, we shall give in a subsequent 
paper an algorithm for computing (3). It will be seen that in this case, the 
algorithm gives the same computation as Grothendieck's residue symbol 
[5]. In the latter's notation (3) can be written as: 

[Ap(z)dZl A ••• Adzn~] 

A cruder and quite different approach to this problem is given in [8]. 
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