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1. We shall deal with the problem of the existence of a solution to the 
classical variational problem, in parametric form. 

2. Let D be a compact region in the x-y plane. (In the following a "com
pact region" will mean a compact set, such that each two of its points could 
be joined by a polygon lying entirely (with possible exception of its end-
points) in the interior of the set. 

3. Let ƒ (x, y, p, q) be defined and have continuous partial derivatives to 
the second order for every (x, y) in D and every p, q. Also let ƒ (x, y, p, q) be 
positive homogeneous of the first order in p, q and assume that 

p2 + 4 2 ^0=>/(x , j ; ,p ,g)>0. 

4. Let P, Q be given points in the x-y plane, and denote by S the family 
of all curves (x(f), y(t)) in D which join P and Q, and such that x(t) and y(t) 
are absolutely-continuous and satisfy x2 4- y2 =£ 0 almost everywhere. 

5. For each (x, y)eDwe denote by K(x, y) the cone in p, q9 f space con
sisting of the points (p, q, ƒ) for which /(x, y, p, q) = ƒ 

6. We shall denote by In(x, y) the "Indicatrix," that is the set of points 
in the p-q plane for which f(x, y9 p, q) = 1. 

7. We denote also by In*(x, y) the convex-hull of In(x, y) (in the p-q plane) 
and we define 

In* *(x, y) s=dcf In(x, y) n In*(x, y). 

8. We shall denote by H(x, y) the following set : 

"(x,y) ^def(^|sin^ = ( p 2 + ^ 2 ) 1 / 2 ; c o s ^ = ( p 2 / ^ 2 ) 1 / 2 ; 

(p,g)eln**(x,)0 • 
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We shall visualize H(xr y) as a subset of angles formed, with the p-axis, by 
rays (in the p-q plane) which emanate from the origin p = q = 0 and cut 
the indicatrix by points which belong to In**(x,y). 

9. For each "angle" A (not necessarily in 7/(x,y)) and each point 
(x, y) e D we shall denote by D{Xty)(A) the ordered pair (of "generalized 
momenta") 

DiXty)(A) = def (/p(x, y, cos A, sin A\ fq(x, y, cos A, sin A)) ; 

we shall call Dixy)(A) "the direction of K(x, y) along A" 
10. Let (x, y) e D. We shall call A a "branch" of H(x, y)if>le tf(x, y) and 

if there exists Ax =/= A such that 

Ax e ff(x, y), * W ^ i ) = D(JC>y)(A). 

It is clear that in this case Ax is also a branch of H(x, y) and we shall say 
that "A and At are conjugate to one another in H(x, y)." Clearly conjugacy 
is an equivalence-relation among branches in ff(x, y), and we shall call the 
classes generated by its partition "conjugacy-classes." 

11. For each (x, y) G D and each Al9 A2 we shall define 

R(x, y, i4 !, i42) =def - cos A x fx(x, y, cos A2, sin X2) 

- sin A ! /y(x, y, cos 4 2 , sin 42) 

+ cos A2 /x(x, y, cos A^sinAJ 

+ sin A2 /y(x, y, cos / l^ sin A^ 

(which is the "Caratheodory function"). 
We shall also define the following partial ordering : 

^i <{x.y) A2 <=> R(x, y, Au A2) < 0. 

12. Let (x,y)eD. We shall say that "there exists a strong variational 
orientation in (x, y)" if the following condition is fulfilled : 

Let M be any conjugacy class £ H(x, y); then 
(a) Al9 A2eM*>R(x,y, Al9 A2) ± 0, 
(b) (Al9 A2, A3 e M; Ax <(Xty) A2 ; A2 <{Xfy) A3) => (Xx <(Xty) A3). 

(That is, -<(x,y) is an order-relation within each conjugacy-class.) 
Furthermore, we shall say that "there exists a strong variational 

orientation in (x, y)" even in the case that H(x, y) does not contain branches. 
13. Let us now assume the following: 
(a) The distance between P = (x0,y0) and Q = ( x ^ y j is sufficiently 

small relative to the distance of either P or Q from the boundary of D. 
(b) For each (x, y) e D, each of the conjugacy-classes s H(x, y) consists 

of at most a finite number of branches. 
(c) There is a strong variational orientation in each (x, y) e D. 
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REMARK. Assumptions (a), (b) are temporary; assumption (c) replaces 
"the convexity assumption." It will probably be weakened in the future. 

14. THEOREM. Under the above mentioned assumptions, there exists in S a 
curve (x(t), y(t)) = C for which J attains its absolute minimum, where J is the 
functional defined by 

J(Q=def ! f(x(t\y(t),x(t)9y(t))dt; 
J to 

(x(toly(t0)) = P, (x(ti),y(t!)) = e 
(and the minimum is relative to the "comparison-curves" in S). 

15. The proof is quite complicated. A sketch of it runs as follows: 
(a) For each natural number n, construct an w-sided polygon Pol(n) 

(joining P and Q) which minimizes J (relative to other n-sided polygons 
with the same endpoints). It is easily seen that if J0 is the lower bound of J 
on S, then 

lim J(Pol(n)) = J0. 
n-+ ou 

(b) Let (x(w)(s*), yin)(s*)) be the parametric representation of Pol(w), where 
for each n we choose the parameter s* to be s/L, where s is the length-
parameter of Pol(w) and L is its total length. 

(c) Introduce the following notation : 

sin^V) ^def^
(W)(^+0) U(n\s*\ 

COS^S*) 5 d / ^ ? 0 ) / ^ % 

ƒ J V ) = /p(*(M)(s*)> y(n\s*\ cos A{n\s*\ sin Ain)(s*)), 

ƒ <n)(s*) = fq(x
{n)(s*\ yin)(s*\ cos /4(w)(s*), sin A(n\s*)). 

Then we prove the following : 
(d) {fï\s*)}in=U2t..,; {/JV)} ( ( l.i.2....) are bounded and have uni-

formly-bounded variation on [0 ^ 5* S 1]; then, using both the Ascoli 
and Helly's principles of choice, we prove further 

(e) There exists a sequence {nun2,n3,...} such that {x(Wj)(s*)}0=1)2,...) 
and {y{nj){s*)}u=lt2t...) converge uniformly to x(s*) and y(s*) respectively, 
and the "generalized momenta" {/pj)(s*)}0=i,2,...)5{/^)(s*)}(>/s=i,?,...) con
verge pointwise to fp(s*) and /fl(s*) respectively, where x(s*), y(s*), fp(s*\ 
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fq(s*) are also of B.V., and x(s*), y{s*) are continuous with respect to s*. 
Then we prove the following : 
(f) For each sg e [0,1], 

^ lim dis(^>(s*X H(x(s$l y(st))) = 0 

(where "dis" denotes the natural distance-function). 
(g) It follows that as ; -> oo and as s* -» s$, either A{nj\s*) approach a 

certain limit in H(x(s$)f y(s*))> or there are finitely-many accumulation 
points, which belong to the same conjugacy-class of #(x(s$), y(s*))-

(h) For any (x0, y0) e D and any Au A2, let R(x0, y0> ̂ i> A2) < 0. Then 
we prove the following : 

Let ABCD be a "small" parallelogram in the x-y plane "near" (x0, y0), 
and suppose that AB and CD form an angle Ax with the x-axis, while 
BC, LM form an angle A2 with the x-axis. Then 

J(AB) + J(£C) < J(AD) + J(DC). 

(i) By adding the condition of "strong variational orientation" it can 
be shown, using real-function theory and measure-theoretic considerations, 
that a subsequence {Pol<WJl)}(ls= 1>2,...) could be extracted such that the pos
sibility of more than one accumulation point for {A(nji)(s*)}iisslt2t...) is 
excluded almost-everywhere. 

By using elementary arguments it now follows that (x(s*), y(s*)) satisfies 
the conclusions of our theorem. 

16. By using this theorem, we show furthermore how one can derive 
conclusions of the following types : 

(a) The existence of solutions to variational problems without assuming 
13(a), but using an additional natural assumption concerning the behavior 
of the problem considered on the boundary of the domain D. 

(b) The existence of solutions to variational problems, with possible 
weakening of condition 12(b). 

(c) The existence of solutions to variational problems defined over 
2-dimensional manifolds. 

No efforts have been made to achieve the most general results. It is 
hoped that in the near future we shall be able to arrive at theorems that 
will be more close to necessary and sufficient conditions, and to treat more 
general types of variational problems. 
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