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1. Introduction. Let TV denote the nilpotent Lie group whose underlying 
manifold is three-dimensional Euclidean space R3 and whose group 
operation is given by (x, y9 z)(x', y\ z') = (x + x', y + y', z + z' + xy'). 
The subset T = {(a, b, c) :a, b.ceZ] of N is a subgroup, and the quotient 
Ayr is a compact manifold, denoted M. On the manifold M there is a 
unique probability measure v invariant under translation by N. (We use 
right cosets Tg,ge N, and hence translation here means right-translation.) 
We will use R to denote the regular representation of N on L2(M, v), 
namely : (Rg(j))(rh) = 4>{Thg) for all g, h e N and all $ e L\M, v). 

The representation R decomposes into a direct-sum of irreducible 
subrepresentations. However, some of the irreducible representations in 
the sum occur with multiplicity greater than 1, and consequently, L2(M, v) 
does not decompose uniquely into a direct sum of irreducible R-invariant 
subspaces. The theorems announced below are aimed toward remedying 
this situation by introducing into the family of all irreducible R-invariant 
subspaces of L2(M, v) a certain amount of structure. 

Let 3N denote the center of N. The Stone-von Neumann theorem says 
that for each nonzero real number ,̂ there is a unique (up to unitary 
equivalence) irreducible unitary representation U* whose restriction to 
$N is a multiple of the character (0,0, z) H» e2ni*z of 3N We will use L(£) 
to denote the Hubert space of U4. 

It is easy to see that, aside from the characters of N vanishing on T, the 
only irreducible summands of R are those U* where £ is a nonzero integer. 
In fact, let n be a nonzero integer, and let H(n) denote the subspace of 
L2(M,v) consisting of those functions ƒ satisfying (R{00z)f)(rh) 
= e2nin*f(Th) for all h e N and (0,0, z) € 3N; then the restriction of R to 
H(ri) is unitarily equivalent to the representation Un ® 1 of N on 
L(n) (x) C|w|. (For a proof, see C. C. Moore [2].) It follows that the irreducible 
subspaces of H(n) are in one-to-one correspondence with the space of 
lines in C|w| through 0—that is, projective space CP^'1. The theorems 
below refine this observation. 
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2. Main results. In accord with the notation already established, we set 
H(0) equal to the subspace of L2(M, v) consisting of those functions ƒ 
constant on orbits of $N in M. Also, we set A = H(0) n C°°(M). We then 
have that A is a subalgebra of C^iM), and that each H(n) becomes an 
,4-module if we set (af)(m) = a(m)f(m) for all a e A,feH(n% and meM. 

THEOREM 1. Let nbe a nonzero integer, let K be an irreducible R-invariant 
subspace of H(n\ and let A(K) = {a e A'.a-fe Kfor all f e K}. Then A(K) 
is a subalgebra of A that is closed under complex conjugation, and A is a 
free A(K)-module whose dimension divides n2 and is divisible by n. 

We define the index of X, ind(X), to be the integer (dimA(K)A)/\n\. 
Let V:H(n) -> L(n) (g) C,n| be an isometric isomorphism that intertwines 

R and Un ® 1. Let £ e CP^'1 and, thinking of Ç as a line in C |n|, pick v 
from among the nonzero points on £. Then V~ 1(L(n) ® v) is an irreducible 
R-invariant subspace K{£) depending only on £ and not on the choice of v. 

THEOREM 2. Let nbe a nonzero integer, and let dbea positive integer that 
divides n. Then 

{teCPW-l:mâ{K{Ç))^d} 

is a nonempty algebraic set of dimension ^ d — 1. 

Theorem 2, in particular, says that ind(K(^)) = 1 for only finitely many 
£eCP | M | _ 1 . Our next result characterizes the K(Ç) with index 1. First, a 
definition : 

Let C denote the subgroup T$N of N, and for each nonzero integer n, 
let Cn denote the subgroup {(a/n, b/n, z):a,beZ, zeR} of N. Let D b e a 
subgroup of Cn that contains C as a subgroup of index n, and let xn denote 
the character (a, b, z) -> e2ninz of C. It is not hard to see that xn

 c a n be 
extended to a character Xn °f ^ The unitary representation of ID of N 
induced by x'n hom D is irreducible by Mackey's little-group theorem (see 
[1]). The representation ID can be described as follows : 

Let [x denote Lebesgue measure on the torus N/D, and let rj : N/D -• TV 
be a section. For all he N, set X(h) = x'n(hrj(h)~A). Then ID is given on 
L2{N/D,IA) by (%<l>)(Dh) = (X(hg)/X(h))<KDhg) for all K geN and 
4>eL\NID^\ 

The function X is constant on right T cosets, and therefore we can map 
L2(NJD,fi) into H(n) by defining (WD(j)){rh) = X(h)(j)(Dh). With WD so 
defined, we have WDI^ = RgW

D for all geN. Hence the image in H(n) of 
WD is an irreducible it-invariant subspace. 
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We shall say that an irreducible JR-invariant subspace K of H(n) is 
rationally presentable if for a suitable choice of D and Xn, the subspace K 
is the image of the map WD. 

THEOREM 3. Let n be a nonzero integer, and let K be an irreducible 
R-invariant subspace of H(ri). Then the following three conditions on K are 
equivalent : 

(1) K is rationally presentable. 

(2) ind(X) = 1. 
(3) There is a function ƒ eK such that \f(m)\ = lfor almost all me M 

and such that {a- f:ae A(K)} is dense in K. 

Making use of the subgroup C„, we can introduce some structure into 
the family Q(n) of rationally presentable subspaces of H (n). We begin by 
observing that if feH(n) and if geCn, then the correspondence 
Th H-> f(Tg~ 1ftg) defines a new function, denoted Lgf in H(n). If K and K' 
are in Q(n\ and if K = LgK' for some g G C„, we shall call K and K' inner 
relatives. 

THEOREM 4. Inner relatedness is an equivalence relation on Q{n\ and each 
equivalence class contains precisely \n\ elements. lfKx e Q(n), and ifK2,..., 
X|„| are the remaining inner relatives ofKl9 then Kl9..., K^ are mutually 
orthogonal and H{n) = £ © }»[ Kj. 

For each nonzero integer n, define an epimorphism sn:N -• N by 
en(x, y, z) = (x, ny, nz). Then £„(r) £ T, and thus sn induces e*:M -> M. 
Let K^= { / O 8 * : / G H ( 1 ) } . Then K^eQ(n). Let K%\... ,K\n

n\ be the 
inner-relatives of K(?\ Then L2(M, v) = H(0) 0 Z © M ^ o Z © ^ ' i Kf. 
Using families of epimorphisms other than the family {ej , we can generate 
other direct-sum decompositions of L2(M, v). One corollary of all of this 
is the following theorem : 

THEOREM 5. Let f be a real-analytic function on M, and let K be any 
irreducible R-invariant subspace ofL2(M, v). Then the orthogonal projection 
off onto K is also real-analytic. 

Indeed, if X is in H(0\ or is if(l), Theorem 5 is obvious; the theorem 
follows in general by working with the spaces Kf\ 

We remark, in conclusion, that all of our results generalize without 
difficulty to 2-step nilpotent Lie groups in general. For more complicated 
nilpotent Lie groups, the situation at present is not very clear, and is being 
worked on. 
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