INVARIANT SUBSPACE THEORY FOR THREE-DIMENSIONAL NILMANIFOLDS

BY LOUIS AUSLANDER¹ AND JONATHAN BREZIN^{2,3} Communicated by C. C. Moore, September 15, 1971

1. **Introduction.** Let N denote the nilpotent Lie group whose underlying manifold is three-dimensional Euclidean space R^3 and whose group operation is given by (x, y, z)(x', y', z') = (x + x', y + y', z + z' + xy'). The subset $\Gamma = \{(a, b, c) : a, b, c \in \mathbb{Z}\}\$ of N is a subgroup, and the quotient N/Γ is a compact manifold, denoted M. On the manifold M there is a unique probability measure ν invariant under translation by N. (We use right cosets $\Gamma g, g \in N$, and hence translation here means right-translation.) We will use R to denote the regular representation of N on $L^2(M, \nu)$, namely: $(R_{\varrho}\phi)(\Gamma h) = \phi(\Gamma hg)$ for all $g, h \in N$ and all $\phi \in L^2(M, \nu)$.

The representation R decomposes into a direct-sum of irreducible subrepresentations. However, some of the irreducible representations in the sum occur with multiplicity greater than 1, and consequently, $L^2(M, \nu)$ does not decompose uniquely into a direct sum of irreducible R-invariant subspaces. The theorems announced below are aimed toward remedying this situation by introducing into the family of all irreducible R-invariant subspaces of $L^2(M, \nu)$ a certain amount of structure.

Let 3N denote the center of N. The Stone-von Neumann theorem says that for each nonzero real number ξ , there is a unique (up to unitary equivalence) irreducible unitary representation U^{ξ} whose restriction to 3N is a multiple of the character $(0,0,z) \mapsto e^{2\pi i \xi z}$ of 3N. We will use $L(\xi)$ to denote the Hilbert space of U^{ξ} .

It is easy to see that, aside from the characters of N vanishing on Γ , the only irreducible summands of R are those U^{ξ} where ξ is a nonzero integer. In fact, let n be a nonzero integer, and let H(n) denote the subspace of $L^2(M, v)$ consisting of those functions f satisfying $(R_{(0,0,z)}f)(\Gamma h)$ $=e^{2\pi inz}f(\Gamma h)$ for all $h \in N$ and $(0,0,z) \in 3N$; then the restriction of R to H(n) is unitarily equivalent to the representation $U^n \otimes 1$ of N on $L(n) \otimes C^{|n|}$. (For a proof, see C. C. Moore [2].) It follows that the irreducible subspaces of H(n) are in one-to-one correspondence with the space of lines in $C^{|n|}$ through 0—that is, projective space $CP^{|n|-1}$. The theorems below refine this observation.

AMS 1969 subject classifications. Primary 2265.

Key words and phrases. Nilmanifold, harmonic analysis.

John Simon Guggenheim Fellow.
Alfred P. Sloan Fellow.

³ Both authors partially supported by the National Science Foundation.

2. **Main results.** In accord with the notation already established, we set H(0) equal to the subspace of $L^2(M, v)$ consisting of those functions f constant on orbits of ${}_{3}N$ in M. Also, we set $A = H(0) \cap C^{\infty}(M)$. We then have that A is a subalgebra of $C^{\infty}(M)$, and that each H(n) becomes an A-module if we set (af)(m) = a(m) f(m) for all $a \in A$, $f \in H(n)$, and $m \in M$.

THEOREM 1. Let n be a nonzero integer, let K be an irreducible R-invariant subspace of H(n), and let $A(K) = \{a \in A : a \cdot f \in K \text{ for all } f \in K\}$. Then A(K) is a subalgebra of A that is closed under complex conjugation, and A is a free A(K)-module whose dimension divides n^2 and is divisible by n.

We define the index of K, ind(K), to be the integer $(\dim_{A(K)}A)/|n|$.

Let $V: H(n) \to L(n) \otimes C^{|n|}$ be an isometric isomorphism that intertwines R and $U^n \otimes 1$. Let $\xi \in CP^{|n|-1}$ and, thinking of ξ as a line in $C^{|n|}$, pick v from among the nonzero points on ξ . Then $V^{-1}(L(n) \otimes v)$ is an irreducible R-invariant subspace $K(\xi)$ depending only on ξ and not on the choice of v.

THEOREM 2. Let n be a nonzero integer, and let d be a positive integer that divides n. Then

$$\{\xi \in \mathbb{C}P^{|n|-1} : \operatorname{ind}(K(\xi)) \le d\}$$

is a nonempty algebraic set of dimension $\leq d-1$.

Theorem 2, in particular, says that $\operatorname{ind}(K(\xi)) = 1$ for only *finitely many* $\xi \in \mathbb{C}P^{|n|-1}$. Our next result characterizes the $K(\xi)$ with index 1. First, a definition:

Let C denote the subgroup $\Gamma_{\delta}N$ of N, and for each nonzero integer n, let C_n denote the subgroup $\{(a/n, b/n, z) : a, b \in \mathbb{Z}, z \in \mathbb{R}\}$ of N. Let D be a subgroup of C_n that contains C as a subgroup of index n, and let χ_n denote the character $(a, b, z) \to e^{2\pi i n z}$ of C. It is not hard to see that χ_n can be extended to a character χ'_n of D. The unitary representation of I^D of N induced by χ'_n from D is irreducible by Mackey's little-group theorem (see [1]). The representation I^D can be described as follows:

Let μ denote Lebesgue measure on the torus N/D, and let $\eta: N/D \to N$ be a section. For all $h \in N$, set $X(h) = \chi'_n(h\eta(h)^{-1})$. Then I^D is given on $L^2(N/D,\mu)$ by $(I_g^D\phi)(Dh) = (X(hg)/X(h))\phi(Dhg)$ for all h, $g \in N$ and $\phi \in L^2(N/D,\mu)$.

The function X is constant on right Γ cosets, and therefore we can map $L^2(N/D, \mu)$ into H(n) by defining $(W^D\phi)(\Gamma h) = X(h)\phi(Dh)$. With W^D so defined, we have $W^DI_g^D = R_gW^D$ for all $g \in N$. Hence the image in H(n) of W^D is an irreducible R-invariant subspace.

We shall say that an irreducible R-invariant subspace K of H(n) is rationally presentable if for a suitable choice of D and χ'_n , the subspace K is the image of the map W^D .

THEOREM 3. Let n be a nonzero integer, and let K be an irreducible R-invariant subspace of H(n). Then the following three conditions on K are equivalent:

- (1) K is rationally presentable.
- (2) ind(K) = 1.
- (3) There is a function $f \in K$ such that |f(m)| = 1 for almost all $m \in M$ and such that $\{a \cdot f : a \in A(K)\}$ is dense in K.

Making use of the subgroup C_n , we can introduce some structure into the family Q(n) of rationally presentable subspaces of H(n). We begin by observing that if $f \in H(n)$ and if $g \in C_n$, then the correspondence $\Gamma h \mapsto f(\Gamma g^{-1}hg)$ defines a new function, denoted $L_g f$, in H(n). If K and K' are in Q(n), and if $K = L_g K'$ for some $g \in C_n$, we shall call K and K' inner relatives.

Theorem 4. Inner relatedness is an equivalence relation on Q(n), and each equivalence class contains precisely |n| elements. If $K_1 \in Q(n)$, and if $K_2, \ldots, K_{|n|}$ are the remaining inner relatives of K_1 , then $K_1, \ldots, K_{|n|}$ are mutually orthogonal and $H(n) = \sum \bigoplus_{j=1}^{|n|} K_j$.

For each nonzero integer n, define an epimorphism $\varepsilon_n: N \to N$ by $\varepsilon_n(x, y, z) = (x, ny, nz)$. Then $\varepsilon_n(\Gamma) \subseteq \Gamma$, and thus ε_n induces $\varepsilon_n^*: M \to M$. Let $K_1^{(n)} = \{f \circ \varepsilon_n^*: f \in H(1)\}$. Then $K_1^{(n)} \in Q(n)$. Let $K_2^{(n)}, \ldots, K_n^{(n)}$ be the inner-relatives of $K_1^{(n)}$. Then $L^2(M, \nu) = H(0) \oplus \sum \bigoplus_{n \neq 0} \sum \bigoplus_{j=1}^{|n|} K_j^{(n)}$. Using families of epimorphisms other than the family $\{\varepsilon_n\}$, we can generate other direct-sum decompositions of $L^2(M, \nu)$. One corollary of all of this is the following theorem:

THEOREM 5. Let f be a real-analytic function on M, and let K be any irreducible R-invariant subspace of $L^2(M, v)$. Then the orthogonal projection of f onto K is also real-analytic.

Indeed, if K is in H(0), or is H(1), Theorem 5 is obvious; the theorem follows in general by working with the spaces $K_j^{(n)}$.

We remark, in conclusion, that all of our results generalize without difficulty to 2-step nilpotent Lie groups in general. For more complicated nilpotent Lie groups, the situation at present is not very clear, and is being worked on.

REFERENCES

- 1. G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789.
- 2. C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146-182. MR 31 #5928.

Department of Mathematics, City University of New York, New York, New York $10036\,$

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

Current address: (L. Auslander) Institute for Advanced Study, Princeton, New Jersey 08540