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I. Statement of results. For an (n)-dimensional Riemannian manifold 
M", isometrically immersed in an (n + fc)-dimensional Riemannian mani­
fold M{")+fc) of constant sectional curvature c, let H denote the mean curva­
ture vector field of M". H is a section of the normal bundle NMn of the 
immersion. When n = 2, k = 1, and c = 0 (a surface immersed in E3), the 
requirement \H\ = constant is classical constant mean curvature. If k> 1, 
however, the condition |H| = constant is usually too weak to prove 
reasonable generalizations of the classical theorems for surfaces of con­
stant mean curvature in E3. We investigate a stronger requirement on H ; 
namely, that H be parallel with respect to the induced connection in the 
normal bundle (for definitions, see II). Then using an analytic construction 
first employed by H. Hopf [2], we obtain 

THEOREM 1. A compact surface M2 of genus 0 immersed in M4(c), c ^ 0, 
upon which H is parallel in the normal bundle, is a sphere of radius l/\H\. 

This generalizes a theorem of Hopf, who proved that the only immersed 
surfaces in E3 of genus 0 with constant mean curvature are spheres [2, 
Chapter 7, §4]. For complete surfaces in £4 , we prove 

THEOREM 2. A complete surface M2, immersed in £4 , whose Gauss curvature 
does not change sign, and for which H is parallel in the normal bundle NM2, 
is a minimal surface (H = 0), a sphere, a right circular cylinder, or a product 
of circles S » x S\p), where \H\ = i ( l / r 2 + l/p2)1/2. 

This extends a theorem of Klotz and Osserman for complete surfaces of 
constant scalar mean curvature in £ 3 [5]. It can also be generalized to 
immersions into Mfc), c ^ 0. Theorem 2 is proved in two steps. First we 
prove 

THEOREM 3. A piece of immersed surface M2 in JE4, satisfying the con­
ditions of Theorem 2 with H =fc 0, is either a sphere or it is flat (K = 0). 

Then we establish the following characterization of flat surfaces in £ 4 

with parallel mean curvature vector fields : 
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THEOREM 4. A piece of immersed surface M2 in E* with parallel mean 

curvature vector H ^ 0 and K = 0 is a piece of Sx(r) x S1(p): the product 
of two circles of radius r and p with the standard flat immersion, (p may be 
infinite, in which case we have a right circular cylinder.) 

Theorem 2 generalizes to immersions in SA(c). 
Surfaces in En which lie minimally in hyperspheres of radius r have the 

same mean curvature vectors as the hypersphere, and consequently have 
parallel mean curvature vector fields. Such surfaces are pseudo-umbilic 
(cp3 = 0 in the lemma in II). In this case, Itoh [3] has proven a special case 
of Theorem 2 for immersions in E4 (see also Chen, [1]). For minimal sur­
faces in S4, Ruh [8] has proven a case of Theorem 1, using methods similar 
to the basic lemma in II. For a wide variety of examples of complete mini­
mal surfaces in S3, see Lawson [6]. 

It is possible to show the existence of surfaces in En and Sn(c) with 
parallel H and (p3 ̂  0 (i.e. they do not lie minimally in hyperspheres). The 
method employed uses a theorem due to Szczarba [9] on existence of 
immersions in constant curvature manifolds with codimension k > 1. 

II. Definitions and Main Lemma. V denotes covariant differentiation on 
M"Jk, and V denotes covariant differentiation on Mn a Mn+k. For X, Y, 
sections of TMn

9 VXY = [VXY]T where [ ]T is projection onto TMn. 
[ ]N is projection onto NMn. 

DEFINITIONS. B(X, Y) = [VXY]N. B is the second fundamental form 
tensor of the immersion. Similarly for AT, a section of ATM", DXN = \VXN]N. 
D defines a connection on ATM". A(X9N) = [VXN]T. A is a, tensor: Ap: 
TMn x NMn -» TMn is bilinear. 

For an orthonormal framing (e1"-en) of TM", H — (l/n)^"= iB(eh et). 
This definition of H is independent of the framing. A normal vector field N 
is said to be parallel in the normal bundle NMn if DXN = 0 for all X in TMn. 
This condition implies |JV| = const. Thus our assumption that H is parallel 
in NMn includes constant mean curvature. (\H\ = c.) 

The Gauss and Codazzi equations, for X, Y, Z sections in TMn, are 

(1) R(X9 Y)Z = c«Z,Z)Y-{Y,Z}X} + A(X9B(Y,Z)) - A(Y,B(X,Z)), 

(2) (Vx5)(7,Z) = (VyB)(Z,Z), 

where (VX£)(Y, Z) = DX(B(Y, Z)) - B(VXY, Z) - B(Y, V*Z) (for a reference 
for the above definitions and equations, see [4, Chapter 7]). 

For X, Y in TM\ N in NM\ R(X, Y)N = DxDyN - DyDxN - D[XY]N 
is the curvature tensor for D. For R, there is a Gauss-type equation 

(3) R(X9 Y)N = B(X, A(N9 Y)) - B(Y9 A(N9 X)) 

and an equation, analogous to (2), 

(4) (VXA)(Y9N) = (VYA)(X9N). 
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For a unit normal vector ea at p e Mn, the matrix (A?,-) = (B(et, e3) • ea) is 

the "second fundamental form matrix in the a direction." We specify 
H/\H\ as en+1 when H ^ 0. Considering an immersed surface (n = 2) 
given in conformai coordinates (u, v) : ds2 = £(dw2 + dv2), we associate to 
it a natural framing 

of the tangent bundle, TM2. 

LEMMA. For an immersed surface, M2 c» M"c|
fc in conformai coordinates, 

let H ^ 0 and ea be a unit normal vector field with ea • H = 0 : 
(a) *ƒ H is parallel in NM2, then cp3 = £{?(/lii — k22) — ^12} *5 ^w 

analytic function of z = u -\- iv; 
(b) *ƒ ea is parallel in NM2, then (pa = E{k\x — ik\2) is an analytic 

function of z ; 
(c) if k = 2 and if is parallel, then ea is parallel, and both q>3 and cpa are 

analytic ; 
(d) under the conditions of (a) and (b), either q>3 = 0 or q>a = KÇ3 where K 

is a real constant. 

SKETCH OF PROOF, (a) Using equation (4) with X = ô/ôu, Y = d/ôv, 
N = H, and the assumption that H is parallel, the equations 

(5) {Ekx x)v - {Ek12\ = i-Evtti 1 + ^22)5 (E^ul* ~ (Ek22)v = i£«(^i 1 + ^22) 

are obtained. (5) is in the same form as the Codazzi equations in conformai 
coordinates for surfaces in E3, only it is expressed for the distinguished 
normal e3 = H/\H\. Since k\x + k\2 = 2\H\ = constant, (5) reduces to the 
Cauchy-Riemann equations for q>3. 

(b) Proof follows that of (a), using the fact that k\x + k\2 = 0. 
(c) Since JVM2 is 2-dimensional, the assumption that H is parallel forces 

ea to be parallel. Then (a) and (b) imply analyticity. 
(d) Using equation (3) with 

we obtain, using the fact that e3 is parallel, 

(6) 0-[£ ^ u - « 2 l 
Note that (6) implies Im(<pa • (p3) = 0. So if <p3 jz 0, q>J(p3 = <pa • y3/\(p3\

2 

is real. By (a) and (b), it is also meromorphic, hence constant. 

III. Proof of Theorems (Sketch). Theorem 1 is proved by constructing 
an analytic differential 03 out of the functions <p3{z) of the lemma : in local 
coordinates, 03 = cp3dz2. Since M2 is of genus 0,03 must be identically zero. 
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Hence cp3(z) = 0. This implies that M2 is pseudo-umbilic (À^ = )?22, 
X\2 = 0). The function <p4 associated with e4, e4 • H = 0 is also zero by a 
similar argument. Hence M2 is totally umbilic. This implies that M2 is 
immersed as a sphere. 

To prove Theorem 3, we can consider on M2 the quadratic analytic dif­
ferentials 03 and 04 given locally by (p3dz2 and cp4dz2 (where cp3, cp4, and z 
are as in the lemma). If K ^ 0, M2 is either compact or parabolic by a 
theorem of Huber (see [5, p. 316]). If it is compact, then either K = 0 or M2 

is of genus 0. The genus 0 case is a sphere by Theorem 1. 
If K ^ 0, then \H\2 - K > \H\2 > 0. In a neighborhood of each point, 

we introduce the new metric ds2 = E(\H\2 - K)1/2(du2 + dv2). Using the 
equality 

\cp3\
2 + M2 = E2(\H\2 - K) 

and part (d) of the lemma to show that A log(|<p3|
2 + I94I2) = 0, we estab­

lish that ds2 is a flat metric. Therefore, the univeral covering surface M2 of 
M2 is conformally the plane. The function \H\2 — K is easily seen to be 
superharmonic. Since it is bounded below, it must be constant. Hence K 
is constant, and must be zero. 

Theorem 4 is proved by introducing conformai coordinates (w, v) such 
that E = 1. The lemma is used to show that all A?7- are constant. Then a 
rotation of coordinates puts the immersion into the form 

/ u . u v . v\ 
(w, v) -» r cos - , r sin - , p cos - , p sin - . 

\ r r P Pj 

The constants r and p are determined from the X^ and |if|. This immersion 
is the standard flat immersion of the plane into Ë4 as a product of circles. 
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