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The Grunsky inequalities characterize the analytic functions that are 
univalent. Theorem 1 gives a new set of inequalities which appear to be the 
result of exponentiating the Grunsky inequalities for functions on the unit 
disc. 

THEOREM 1. Iff(z) = z + a2z
2 + 

{z:\z\ < 1}, then 
is a one-to-one, analytic function on 

(i) £ av<*, 
V , / i = 1 

Zv ~ Zn 

*v Z,i f(Zv) ~ f(Zn) v , / i = l L 

For for all zv in the unit disc and all complex numbers av for n = 1, 2,.. 
zv = z„ replace (zv - zM)/( f(zv) - /(z„)) by l/f'(zv). 

This theorem can be proved by an extension by Goluzin's method [2] 
of using Löwner's differential equation [4] to prove the Grunsky in­
equalities. Using (1), it is easy to find the bounds on the coefficients of the 
inverse function ƒ _1(w) for all functions ƒ as described in Theorem 1. 
(This problem was first solved by Löwner [4].) 

By the same method, the following theorem can be proved. 

THEOREM 2. Iff (z) = z + a2z
2 -f a3z

3 + • • • is a one-to-one, analytic 
function on {z:\z\ < 1}, then 

(2) 

and 

(3) 

E av«„ 
v,n= 1 

v,fi= 1 

ƒ (Zv) - ƒ (2J 1 
Zv - Z„ 1 Ë «v 

/ (Zv) 

ƒ (Zy) ~ ƒ (Z„) 1 

Zv - Z„ 1 E «v 
ƒ(*,) 

For for all zv in f/ze unit disc, for all complex numbers av and n=l,2,. 
zv = zM rep/ace (/(zv) - /(z„))/(zv - z„) fcy ƒ '(zv). 

From (2) it follows that if the coefficients of ƒ are all real, then at + a3 

+ - - • + a2n-1 ^ al and consequently \an\ ^ n for n = 1,2,... . (That the 
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Bieberbach conjecture holds for functions with real coefficients was first 
proved by Dieudonné [1] and Rogosinski [6].) 

From (3) it follows that 

(4) £ k\ak\
2 + 'Y! (2n - k)\ak\

2 ^ \af 
k=l k=n+l 

and consequently \an\ ^ (7/6)1/2n for n = 1,2,... . The constant (7/6)1/2 

is not the smallest that follows from inequality (3), but this estimate already 
compares favorably with the best previous result \an\ ^ (1.243)rc obtained 
by Milin [5]. 

From (3) also follows a more general inequality than (4) which implies 
that l imsup^jaj /n < 1, except in case f(z) = z/(l — ewz)2. (This 
theorem was first proved by Hay man [3].) 
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